

Coefficient de Transmission Thermique - U_w Facteur Solaire - S_w Transmission Lumineuse - TL_w

FCBA organisme notifié n° 0380 pour la norme harmonisée NF EN 14351-1 +A2 Calcul selon Règles Th-bât 2020 Fascicule 3 parois vitrées et normes EN ISO 10077-1 et -2

ARBOR / FENEX SELECTRON LTD. STI

DEREBOYU CD. SENGUL SK. NO: 6 34303 HALKALI / ISTANBUL TURQUIE – TURKEY

Gamme commerciale: 58 NF

Fenêtres, portes-fenêtres mixte bois-aluminium

à recouvrement en jeu de 12 mm ouvrant à la française, oscillo battant épaisseur 58 mm de bois sur ouvrant

Siège social

10, rue Galilée CS 81050 Champs-sur-Marne 77420 MARNE LA VALLEE CEDEX 2 Tél +33 (0)1 72 84 97 84 www.fcba.fr

Siret 775 680 903 00132 APE 7219Z

Code TVA CEE : FR 14 775 680 903

Bordeaux

Allée de Boutaut – BP227 33028 Bordeaux Cedex Tél +33 (0)5 56 43 63 00 Marc SIGRIST

Responsable Secteur Menuiseries Revêtements Bordeaux, le 19/12/2022 Marie-Paule FORNES

Ingénieur Construction Menuiseries

Valeurs calculées pour des configurations standards U_w - S_w - TL_w

Les résultats dans le tableau sont les valeurs calculées pour des configurations standards (dimensions **conventionnelles** et *personnalisées*)

Coefficient U _w en W/(m ² .K) ¹										
	Coefficient U _g (Règles Th-U) du vitrage en W/(m².K)									
Type de menuiserie	Conductivité du bois	avec intercalaire Thermix TX pro								
r ype de menuiserie	en W/(m.K)	Vitrage de 24 mm		Vitrage de 36 mm		Vitrage de 42 mn		2 mm		
		1,1	1,2	1,3	1,0	1,1	1,2	0,6	0,7	0,9
Fenêtre 1 Vantail	0,13	1,4	1,4	1,5	1,3	1,4	1,5	0,97	1,0	1,2
1,48 x 1,25 m (H x L) Appui bois	0,18	1,4	1,5	1,6	1,4	1,4	1,5	1,1	1,1	1,3
Fenêtre 1 Vantail	0,13	1,4	1,4	1,5	1,3	1,4	1,5	0,97	1,0	1,2
1,48 x 1,23 m (H x L) Appui bois	0,18	1,4	1,5	1,6	1,4	1,4	1,5	1,1	1,1	1,3
Porte-fenêtre 1 Vantail 2,18 x 1,53 m (H x L)	0,13	1,4	1,4	1,5	1,3	1,4	1,5	0,95	1,0	1,2
Entièrement vitré seuil aluminium	0,18	1,4	1,5	1,6	1,4	1,4	1,5	1,0	1,1	1,3
Porte-fenêtre 1 Vantail 2,40 x 1,10 m (H x L)	0,13	1,4	1,4	1,5	1,3	1,4	1,5	0,96	1,0	1,2
Entièrement vitré seuil aluminium	0,18	1,4	1,5	1,6	1,4	1,4	1,5	1,0	1,1	1,3

¹ (Voir calculs détaillés en annexe)

	Coefficient Scw	(*)			
Type de menuiserie (épvitrage=24 mm)	Facteur solaire	Coefficier	nt d'absorpti	ion de la me	nuiserie α
Pour Bois λ≥0.13	du vitrage S _g ou g	0,4	0,6	0,8	1
	0,20	0,15	0,15	0,16	0,16
	0,30	0,22	0,22	0,23	0,23
	0,40	0,29	0,29	0,30	0,30
Fenêtre 1 Vantail	0,50	0,36	0,36	0,37	0,37
1,48 x 1,25 m (H x L)	0,52	0,37	0,38	0,38	0,39
Appui bois	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,60	0,43	0,44	0,44	0,44
	0,70	0,50	0,51	0,51	0,51
	0,20	0,15	0,15	0,16	0,16
	0,30	0,22	0,22	0,23	0,23
	0,40	0,29	0,29	0,30	0,30
Fenêtre 1 Vantail	0,50	0,36	0,36	0,37	0,37
1,48 x 1,23 m (H x L)	0,52	0,37	0,38	0,38	0,39
Appui bois	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,60	0,43	0,43	0,44	0,44
	0,70	0,50	0,50	0,51	0,51
	0,20	0,16	0,16	0,16	0,17
	0,30	0,23	0,24	0,24	0,24
	0,40	0,31	0,31	0,31	0,32
Porte-fenêtre 1 Vantail	0,50	0,38	0,39	0,39	0,39
2,18 x 1,53 m (H x L) Entièrement vitré	0,52	0,40	0,40	0,40	0,41
seuil aluminium	0,54	0,41	0,42	0,42	0,42
	0,58	0,44	0,45	0,45	0,45
	0,60	0,46	0,46	0,46	0,47
	0,70	0,53	0,54	0,54	0,54
	0,20	0,15	0,16	0,16	0,17
	0,30	0,23	0,23	0,24	0,24
	0,40	0,30	0,31	0,31	0,31
Porte-fenêtre 1 Vantail	0,50	0,38	0,38	0,38	0,39
2,40 x 1,10 m (H x L) Entièrement vitré	0,52	0,39	0,39	0,40	0,40
seuil aluminium	0,54	0,40	0,41	0,41	0,42
	0,58	0,43	0,44	0,44	0,45
	0,60	0,45	0,45	0,46	0,46
	0,70	0,52	0,53	0,53	0,53

	Coefficient Scw	(*)			
Type de menuiserie (ép _{vitrage} =42 mm)	Facteur solaire	Coefficier	nt d'absorpti	ion de la me	nuiserie α
Pour Bois λ≥0.13	du vitrage S _g ou g	0,4	0,6	0,8	1
	0,20	0,15	0,15	0,16	0,16
	0,30	0,22	0,22	0,23	0,23
	0,40	0,29	0,29	0,30	0,30
Fenêtre 1 Vantail	0,50	0,36	0,36	0,37	0,37
1,48 x 1,25 m (H x L)	0,52	0,37	0,38	0,38	0,39
Appui bois	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,60	0,43	0,43	0,44	0,44
	0,70	0,50	0,51	0,51	0,51
	0,20	0,15	0,15	0,16	0,16
	0,30	0,22	0,22	0,23	0,23
	0,40	0,29	0,29	0,30	0,30
Fenêtre 1 Vantail	0,50	0,36	0,36	0,37	0,37
1,48 x 1,23 m (H x L)	0,52	0,37	0,38	0,38	0,38
Appui bois	0,54	0,39	0,39	0,39	0,40
	0,58	0,42	0,42	0,42	0,43
	0,60	0,43	0,43	0,44	0,44
	0,70	0,50	0,50	0,51	0,51
	0,20	0,16	0,16	0,16	0,17
	0,30	0,23	0,23	0,24	0,24
	0,40	0,31	0,31	0,31	0,32
Porte-fenêtre 1 Vantail	0,50	0,38	0,39	0,39	0,39
2,18 x 1,53 m (H x L) Entièrement vitré	0,52	0,40	0,40	0,40	0,41
seuil aluminium	0,54	0,41	0,42	0,42	0,42
	0,58	0,44	0,45	0,45	0,45
	0,60	0,46	0,46	0,46	0,47
	0,70	0,53	0,54	0,54	0,54
	0,20	0,15	0,16	0,16	0,16
	0,30	0,23	0,23	0,23	0,24
	0,40	0,30	0,30	0,31	0,31
Porte-fenêtre 1 Vantail	0,50	0,37	0,38	0,38	0,39
2,40 x 1,10 m (H x L) Entièrement vitré	0,52	0,39	0,39	0,40	0,40
seuil aluminium	0,54	0,40	0,41	0,41	0,41
	0,58	0,43	0,44	0,44	0,44
	0,60	0,45	0,45	0,46	0,46
	0,70	0,52	0,53	0,53	0,53

 $^{^{\}star}$ (Voir calculs détaillés en annexe). Le facteur solaire S^{c}_{w} de la fenêtre sans protection mobile (ni intérieure, ni extérieure), est déterminé selon la norme XP P50-777avec les conditions pour le calcul des consommations d'énergie.

ARBOR / FENEX - SELECTRON Gamme 58 NF Ref: FCBA.IBC/2020.321

Type de menuiserie Pour Bois λ≥0.13	Coefficient de transmission lumineuse du vitrage TL _g	TLw
	0,4	0,28
	0,5	0,35
	0,6	0,42
Fenêtre 1 Vantail	0,7	0,49
1,48 x 1,25 m (H x L)	0,73	0,52
Appui bois	0,78	0,55
	0,8	0,57
	0,81	0,57
	0,9	0,64
	0,4	0,28
	0,5	0,35
	0,6	0,42
Fenêtre 1 Vantail	0,7	0,49
1,48 x 1,23 m (H x L)	0,73	0,51
Appui bois	0,78	0,55
	0,8	0,56
	0,81	0,57
	0,9	0,63
	0,4	0,30
	0,5	0,38
	0,6	0,45
Porte-fenêtre 1 Vantail	0,7	0,53
2,18 x 1,53 m (H x L) Entièrement vitré	0,73	0,55
seuil aluminium	0,78	0,59
	0,8	0,60
	0,81	0,61
	0,9	0,68
	0,4	0,29
	0,5	0,37
	0,6	0,44
Porte-fenêtre 1 Vantail	0,7	0,51
2,40 x 1,10 m (H x L) Entièrement vitré	0,73	0,54
seuil aluminium	0,78	0,57
	0,8	0,59
	0,81	0,60
	0,9	0,66

Données d'entrées

Les « données d'entrées » correspondent à l'ensemble des valeurs calculées, spécifiques à la menuiserie, nécessaires pour le calcul des facteurs U_w , S_w et TL_w .

Coefficient U _f en W/(m².K) ¹ – Selon EN ISO 10077-2 – Logiciel numérique Flixo V8					
Section		Largeur section	Conductivité du bois λ en W/(m.°K)		
		w _f en mm	0,13	0,18	
TH_RI_24 mm	Traverse haute et Rive fenêtre (VI de 24 mm)	108	1,6	1,9	
TB_24 mm	Traverse basse avec appui bois (VI de 24 mm)	108	1,7	2,0	
SA_24 mm	Traverse basse avec seuil aluminium 20 mm (VI de 24 mm)	95	2,8	3,1	
TH_RI_36 mm	Traverse haute et Rive fenêtre (VI de 36 mm)	108	1,6	1,8	
TB_36 mm	Traverse basse avec appui bois (VI de 36 mm)	108	1,6	1,9	
SA_36 mm	Traverse basse avec seuil aluminium 20 mm (VI de 36 mm)	95	2,7	3,0	
TH_RI_42 mm	Traverse haute et Rive fenêtre (VI de 42 mm)	108	1,5	1,8	
TB_42 mm	Traverse basse avec appui bois (VI de 42 mm)	108	1,6	1,9	
SA_42 mm	Traverse basse avec seuil aluminium 20 mm (VI de 42 mm)	95	2,6	2,9	

la taman da ba	Coefficient Ψ_g en W/(m.K) 1 selon U_g du vitrage en W/(m 2 .K) Logiciel numérique Flixo V8				
Intercalaire	Triple vitrage 42 mm U _g ≥ 0,6	Double vitrage 36 mm U _g ≥ 1,0	Double vitrage 24 mm U _g ≥ 1,1		
Thermix TX pro	0,039	0,054	0,041		

Performances thermo optiques de vos vitrages données par votre fournisseur (fiche technique en annexe)				
vitrage	Ug	S _g ou g	TL_g	
4 ClimaGuard® Premium2 T / 16 arg 100% / 4	1,1	0,58	0,81	
44.2 ClimaGuard® Premium2 T / 16 arg 100% / 4	1,1	0,54	0,80	
66.2 ClimaGuard® Premium2 T / 16 arg 100% / 44.2	1,0	0,52	0,78	
4 ClimaGuard® Premium2 T / 16 arg 100% / 4 / 14 arg 100% / 4 ClimaGuard® Premium2 T	0,6	0,50	0,73	

ARBOR / FENEX - SELECTRON Gamme 58 NF Ref: FCBA.IBC/2020.321

ANNEXES

Méthode de calcul pour les dimensions spécifiques

Pour toutes les dimensions spécifiques, il est nécessaire de calculer les coefficients Uw, Sw et TLw spécifiques de la menuiserie, selon les méthodes décrites à la suite.

Coefficient de Transmission Thermique - Uw

Le coefficient de transmission thermique est un coefficient surfacique moyen qui définit la puissance dissipée par m² de surface de menuiserie et par degré (C° ou K) de différence entre l'intérieur et l'extérieur.

Le coefficient de transmission thermique Uw de la fenêtre, de la porte ou de la porte-fenêtre peut être calculé selon la formule suivante :

$$U_W = \frac{A_f U_f + A_g U_g + A_p U_p + \Psi_g I_g}{A_f + A_g + A_p}$$

U_w est le coefficient de transmission thermique de la fenêtre nue en W/(m².K).

A_q est la plus petite des aires visibles du vitrage, vues des deux côtés de la paroi en m².

A_f est la plus grande aire projetée de la menuiserie prise sans recouvrements (incluant la surface de la pièce d'appui éventuelle), vue des deux côtés de la paroi, en m²

A_p est la plus grande aire projetée des panneaux de soubassement vue des deux côtés de la paroi, en m²

 l_g est la plus grande somme des périmètres visibles du vitrage, vus des deux côtés de la paroi en m

Ψ_g est le coefficient linéique dû à l'effet thermique combiné de l'espaceur et du vitrage, en W/(m.K).

U_g est le coefficient surfacique en partie centrale du vitrage en W/(m².K).

U_p est le coefficient surfacique en partie centrale du panneau de soubassement en W/(m².K).

U_f est le coefficient surfacique *moyen* de la menuiserie en W/(m².K) calculé selon la formule suivante :

$$Uf = \frac{\sum A_{fi}U_{fi}}{A_f}$$

U_{fi} étant le coefficient surfacique d'une section de la menuiserie.

A_{fi} étant son aire projetée correspondante. La largeur des montants en partie courante est supposée se prolonger sur toute la hauteur de la fenêtre.

Le facteur de transmission solaire S définit le rapport entre l'énergie solaire totale transmise dans un local à travers une paroi vitrée et l'énergie solaire incidente sur cette paroi, dans les longueurs d'onde allant de 0,3 μ m à 2,5 μ m

Le facteur solaire S^c_w de la fenêtre sans protection mobile (ni intérieure, ni extérieure), est déterminé selon la norme XP P50-777avec les conditions pour le calcul des consommations d'énergie, selon la formule suivante .

$$S_w = \frac{S_f A_f + S_g A_g + S_p A_p}{A_f + A_g + A_p}$$

- S^c_w est le facteur solaire de la fenêtre pour les conditions de calcul de consommations (« hiver »)
- S_g est le facteur solaire du vitrage pour les conditions de calcul de consommation (« hiver »)
- **S**_f est le facteur solaire moyen du châssis de la menuiserie (encadrement) en W/(m².K) calculé selon la formule ci-dessous.
- **S**_p est le facteur solaire du panneau de la menuiserie (soubassement opaque) en W/(m².K) calculé selon la formule suivante :

$$S_f = \frac{\alpha U_f}{h_e} \qquad S_p = \frac{\alpha U_p}{h_e}$$

α étant le coefficient d'absorption de la menuiserie selon sa couleur :

Catégorie	Couleurs	Valeur de α par défaut :
Clair	Blanc, jaune, orange, rouge clair	0,4
Moyen	Rouge sombre, vert clair, bleu clair, gris clair	0,6
Sombre	Brun, vert sombre, bleu vif, gris moyen	8,0
Noir	Noir, brun sombre, bleu sombre, gris sombre	1,0

he étant le coefficient d'échanges superficiels, pris égal à 25 W/(m².K).

Transmission Lumineuse - TLw

Le facteur de Transmission Lumineuse correspond à la fraction transmise du rayonnement solaire qui arrive sur la menuiserie. (On ne s'intéresse qu'à la partie visible du spectre solaire, c'est-à-dire dans les longueurs d'onde allant de 0.38 µm à 0.78 µm.)

Le facteur de transmission lumineuse TL de la fenêtre, de la porte ou de la porte-fenêtre peut être calculé selon la formule suivante :

$$TL_W = \frac{A_g}{A_p + A_f + A_g} \times TL_g$$

TL_w est le coefficient de transmission lumineuse de la fenêtre nue.

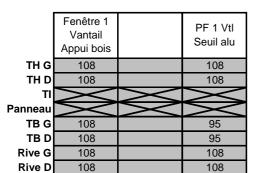
TL_g est le coefficient de transmission lumineuse du vitrage.

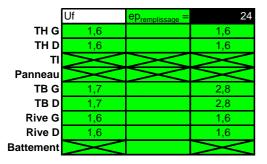
Dénomination Française des essences de bois	Dénomination Botanique	Code (selon NF EN 13556)	Conductivité thermique utile (A) en W/(m.K)
Acajou d'Afrique	Kkhaya spp.	KHXX	0,13
Bintangor	Colophyllum spp.	CLXX	0,18
Bossé clair	Guarea cedrata	GRXX	0,15
Bossé foncé	Guarea thompsonii	GRTH	0,18
Cèdre	C.deodara	CDXX	0,13
Châtaignier	Castanea sativa	CTST	0,15
Chêne (rouvre et/ou pédonculé)	Quercus petraea Quercus robur	QCXE	0,18
Curupixa	Micropholis spp.	MPXX	0,18
Douglas	Pseudotsuga menziesii	PSMN	0,13
Doussié	Afzelia spp.	AFXX	0,18
Epicéa	Picea abies	PCAB	0,11
Eucalyptus globulus	Eucalyptus globulus	EUGL	0,18
Eucalyptus grandis	Eucalyptus grandis	EUGR	0,18
Framiré	Terminalia ivorensis	TMIV	0,13
Frêne	Fraxinus excelsior L	FXEX	0,18
Hêtre	Fagus sylvatica	FASY	0,18
Iroko	Milicia excelsa & M. regia	MIXX	0,16
Jequitiba	Cariniana spp.	CZXX	0,15
Kosipo	Entandrophragma candollei	ENCN	0,18
Kotibé	Nesogordonia spp.	NEXX	0,18
Limba / Fraké	Terminalia superba	TMSP	0,15
Louro vermelho (Grignon	Sextonia rubra	OCRB	0,16
franc) Makoré / Douka	Tieghemella spp.	TGAF	0,16
Mélèze	Larix decidua	LADC / LAXX	0,10
Mengkulang (Palapi)	Heritiera spp.	HEXM	0,13
Meranti dark red	Shorea spp. section Rubroshorea	SHDR	0,16
Meranti light red	Shorea spp. section Rubroshorea	SHLR	0,13
Merbau	Intsia spp.	INXX	0,18
Moabi	Baillonella toxisperma	BLTX	0,18
Movingui	Distemonanthus benthamianus	DTBN	0,18
Niangon	Heritiera utilis	HEXN	0,16
Peuplier blanc	Populus alba L	POAL	0,13
Pin maritime	Pinus pinaster	PNPN	0,13
Pin noir d'Autriche et Laricio	Pinus nigra	PNNN PNNL	0,13
Pin sylvestre	Pinus sylvestris	PNSY	0,13
Robinier (faux Acacia)	Robinia pseudoacacia L	ROPS	0,13
Sapelli	Entandrophragma	ENCY	0,16
Sapin blanc	cylindricum Abies alba	ABAL	0,11
Sipo	Entandrophragma utile	ENUT	0,16
Tauari	Couratari spp.	CIXX	0,15
Teck	Tectona grandis	TEGR	0,15
Tiama	Entandrophragma angolense	ENAN	0,15
Tola	Gossweilerodendron balsamiferum	GOXX	0,15
Western Hemlock	Tsuga heterophylla	TSHT	0,13
Western Red Cedar	Thuja plicata	THPL	0,13
	informations données par M		

Ce tableau se base sur les informations données par NF EN ISO 10077-2 de Juillet 2017 et le Fascicule matériaux des Règles Th-bât 2020.

Pour les essences non listées ci-dessus :

Matériaux (ρ _n : masse volumique moyenne)	Masse volumique (ρ) en kg/m³	Conductivité thermique utile (λ) en W/(m.K)
Feuillus très lourd ρ _n > 1000 kg/m ³	ρ > 870	0,29
Feuillus lourd $865 < \rho_n \le 1000 \text{ kg/m}^3$	750 < ρ ≤ 870	0,23
Feuillus mi-lourd $650 < \rho_n \le 865 \text{ kg/m}^3$	565 < ρ ≤ 750	0,18
Feuillus légers 500 < ρ _n ≤ 650 kg/m³	435 < ρ ≤ 565	0,15
Feuillus très légers 230 < ρ _n ≤ 500 kg/m³ hors Balsa	200 < ρ ≤ 435	0,13
Balsa ρ _n ≤ 230 kg/m³	ρ ≤ 200	0,057
Résineux très lourd ρ _n > 700 kg/m ³	ρ > 610	0,23
Résineux lourd $600 < \rho_n \le 700 \text{ kg/m}^3$	520 < ρ ≤ 610	0,18
Résineux mi-lourd $500 < \rho_n \le 600 \text{ kg/m}^3$	435 < ρ ≤ 520	0,15
Résineux légers ρ _n ≤ 500 kg/m³	ρ ≤ 435	0,13


Ce tableau se base sur les informations données le Fascicule matériaux des Règles Th-bât 2020.


CLIENT: ARBOR Produit: 58NF

Plans (refs, date): plans du 16/11/2022

INSTITUT TECHNOLOGIQUE

Battement

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2180
largeur hors-tout:	1250		1250
Hauteur verre	1264		1977
largeur verre	1034	#DIV/0!	1034
Ag	1,307	#DIV/0!	2,044
Af	0,543		0,681
Ар	$\gg \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\bigvee	\bigvee
Up	$>\!\!<$	\mathbb{X}	\langle
Af + Ag + Ap	1,850	#DIV/0!	2,725
Hors tout L x H	1,850		2,725
Af rives	0,320		0,471
	•		- /
Af TH	0,112		0,112
Af TH Af TB	0,112 0,112		
<i>7</i>		>	0,112
Af TB		X	0,112
Af TB Af TI		#DIV/0!	0,112
Af TB Af TI Af Bat	0,112	#DIV/0! #DIV/0!	0,112 0,098

λ= 0,13

Flixo v8

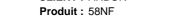
Int.: Thermix TX pro (DV24)

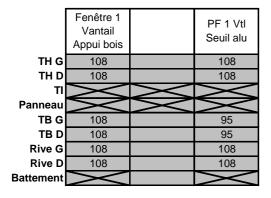
		U	w	
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5		11		
0,6				
0,7				
0,8				
0,9				
1				
1,1	0,041	1,4	#DIV/0!	1,4
1,2	0,041	1,4	#DIV/0!	1,4
1,3	0,041	1,5	#DIV/0!	1,5
1,4	0,041	1,6	#DIV/0!	1,6
1,5	0,041	1,6	#DIV/0!	1,7
1,6	0,041	1,7	#DIV/0!	1,7
1,7	0,041	1,8	#DIV/0!	1,8
1,8	0,041	1,8	#DIV/0!	1,9
1,9	0,041	1,9	#DIV/0!	2
2	0,041	2	#DIV/0!	2
2,1	0,041	2,1	#DIV/0!	2,1
2,2	0,041	2,1	#DIV/0!	2,2
2,3	0,041	2,2	#DIV/0!	2,3

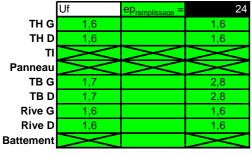
		TLw		
Tie	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu	
Tlg				
0,4	0,28	#DIV/0!	0,30	
0,5	0,35	#DIV/0!	0,38	
0,6	0,42	#DIV/0!	0,45	
0,7	0,49	#DIV/0!	0,53	
0,73	0,52	#DIV/0!	0,55	
0,78	0,55	#DIV/0!	0,59	
0,8	0,57	#DIV/0!	0,60	
0,81	0,57	#DIV/0!	0,61	
0,9	0,64	#DIV/0!	0,68	

	Sw selo	n Sg et α	Fenêtre 1 Vantail Appui bois		oui bois
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,44	0,44	0,44
	0,7	0,50	0,51	0,51	0,51

	Sw selo	n Sg et α			
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!


	Sw selo	n Sg et α	PI	F 1 Vtl Seuil a	lu
	α	0,4	0,6	0,8	1
	0,2	0,16	0,16	0,16	0,17
	0,3	0,23	0,24	0,24	0,24
	0,4	0,31	0,31	0,31	0,32
	0,5	0,38	0,39	0,39	0,39
Sg	0,52	0,40	0,40	0,40	0,41
	0,54	0,41	0,42	0,42	0,42
	0,58	0,44	0,45	0,45	0,45
	0,6	0,46	0,46	0,46	0,47
	0,7	0,53	0,54	0,54	0,54


1/2


CLIENT: ARBOR

Plans (refs, date): plans du 16/11/2022

INSTITUT TECHNOLOGIQUE

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар	\bigvee	\bigvee	\sim
Up	\mathbb{X}	\mathbb{X}	$>\!\!<$
Up Af + Ag + Ap	1,820	#DIV/0!	2,640
•	1,820 1,820	#DIV/0!	2,640 2,640
Af + Ag + Ap	·	#DIV/0!	
Af + Ag + Ap Hors tout L x H	1,820	#DIV/0!	2,640
Af + Ag + Ap Hors tout L x H Af rives	1,820 0,320	#DIV/0!	2,640 0,518
Af + Ag + Ap Hors tout L x H Af rives Af TH	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI Af Bat	1,820 0,320 0,110 0,110 1,620 4,556	\mathbb{X}	2,640 0,518 0,095 0,084 1,744 6,162

λ= 0,13

Flixo v8

Int.: Thermix TX pro (DV24)

		U	w	
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5		. 44		
0,6				
0,7				
0,8				
0,9				
1				
1,1	0,041	1,4	#DIV/0!	1,4
1,2	0,041	1,4	#DIV/0!	1,4
1,3	0,041	1,5	#DIV/0!	1,5
1,4	0,041	1,6	#DIV/0!	1,6
1,5	0,041	1,6	#DIV/0!	1,7
1,6	0,041	1,7	#DIV/0!	1,7
1,7	0,041	1,8	#DIV/0!	1,8
1,8	0,041	1,8	#DIV/0!	1,9
1,9	0,041	1,9	#DIV/0!	2
2	0,041	2	#DIV/0!	2
2,1	0,041	2,1	#DIV/0!	2,1
2,2	0,041	2,1	#DIV/0!	2,2
2,3	0,041	2,2	#DIV/0!	2,2

		TLw	
Tlg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,4	0,28	#DIV/0!	0,29
0,5	0,35	#DIV/0!	0,37
0,6	0,42	#DIV/0!	0,44
0,7	0,49	#DIV/0!	0,51
0,73	0,51	#DIV/0!	0,54
0,78	0,55	#DIV/0!	0,57
0,8	0,56	#DIV/0!	0,59
0,81	0,57	#DIV/0!	0,60
0,9	0,63	#DIV/0!	0,66

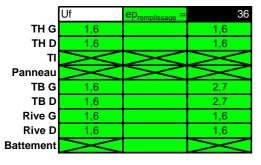
	Sw selo	n Sg et α	Fenêtre 1 Vantail Appui bois		oui bois
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,43	0,44	0,44
	0,7	0,50	0,50	0,51	0,51

	Sw selo	n Sg et α			
	α	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selo	n Sg et α	PI	1 Vtl Seuil a	lu
Γ	α	0,4	0,6	0,8	1
	0,2	0,15	0,16	0,16	0,17
	0,3	0,23	0,23	0,24	0,24
	0,4	0,30	0,31	0,31	0,31
	0,5	0,38	0,38	0,38	0,39
Sg	0,52	0,39	0,39	0,40	0,40
	0,54	0,40	0,41	0,41	0,42
	0,58	0,43	0,44	0,44	0,45
	0,6	0,45	0,45	0,46	0,46
	0,7	0,52	0,53	0,53	0,53

Flixo v8

 $\lambda = 0.13$


Int.: Thermix TX pro (DV36)

ISTITUT TECHNOLOGIOUE

CLIENT: ARBOR
Produit: 58NF

Plans (refs, date): plans du 16/11/2022

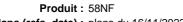
	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
TH G	108		108
TH D	108		108
TI	\bigvee	\bigvee	\nearrow
Panneau	\bigvee	\bigvee	\mathbb{X}
TB G	108		95
TB D	108		95
Rive G	108		108
Rive D	108		108
Battement	$>\!\!<$		$>\!\!<$

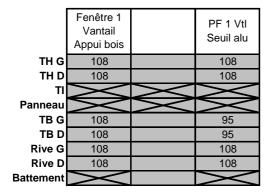
	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2180
largeur hors-tout:	1250		1250
Hauteur verre	1264		1977
largeur verre	1034	#DIV/0!	1034
Ag	1,307	#DIV/0!	2,044
Af	0,543		0,681
Ар	\bigvee	\bigvee	\gg
Up	\bigvee	\bigvee	\mathbb{N}
Up Af + Ag + Ap	1,850	#DIV/0!	2,725
-	1,850 1,850	#DIV/0!	2,725 2,725
Af + Ag + Ap	· ·	#DIV/0!	
Af + Ag + Ap Hors tout L x H	1,850	#DIV/0!	2,725
Af + Ag + Ap Hors tout L x H Af rives	1,850 0,320	#DIV/0!	2,725 0,471
Af + Ag + Ap Hors tout L x H Af rives Af TH	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI Af Bat	1,850 0,320 0,112 0,112		2,725 0,471 0,112 0,098

		Uw		
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5				
0,6				
0,7				
0,8				
0,9				
1	0,054	1,3	#DIV/0!	1,3
1,1	0,054	1,4	#DIV/0!	1,4
1,2	0,054	1,5	#DIV/0!	1,5
1,3	0,054	1,5	#DIV/0!	1,5
1,4	0,054	1,6	#DIV/0!	1,6
1,5	0,054	1,7	#DIV/0!	1,7
1,6	0,054	1,7	#DIV/0!	1,8
1,7	0,054	1,8	#DIV/0!	1,8
1,8	0,054	1,9	#DIV/0!	1,9
1,9	0,054	1,9	#DIV/0!	2
2	0,054	2	#DIV/0!	2,1
2,1	0,054	2,1	#DIV/0!	2,1
2,2	0,054	2,2	#DIV/0!	2,2
2,3	0,054	2,2	#DIV/0!	2,3

		TLw	
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,4	0.28	#DIV/0!	0.30
	- , -		
0,5	0,35	#DIV/0!	0,38
0,6	0,42	#DIV/0!	0,45
0,7	0,49	#DIV/0!	0,53
0,73	0,52	#DIV/0!	0,55
0,78	0,55	#DIV/0!	0,59
0,8	0,57	#DIV/0!	0,60
0,81	0,57	#DIV/0!	0,61
0,9	0,64	#DIV/0!	0,68

	Sw selo	n Sg et α	Fenêtre 1 Vantail Appui bois		oui bois
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,44	0,44	0,44
	0,7	0,50	0,51	0,51	0,51


	Sw selo	n Sg et α			
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!


	Sw selo	n Sg et α	PI	1 Vtl Seuil a	lu
	α	0,4	0,6	0,8	1
	0,2	0,16	0,16	0,16	0,17
	0,3	0,23	0,24	0,24	0,24
	0,4	0,31	0,31	0,31	0,32
	0,5	0,38	0,39	0,39	0,39
Sg	0,52	0,40	0,40	0,40	0,41
	0,54	0,41	0,42	0,42	0,42
	0,58	0,44	0,45	0,45	0,45
	0,6	0,46	0,46	0,46	0,47
	0,7	0,53	0,54	0,54	0,54

CLIENT: ARBOR

Plans (refs, date): plans du 16/11/2022

INSTITUT TECHNOLOGIQUE

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар	\langle	\bigvee	\sim
Up	$\langle \langle \rangle \rangle$	$\langle \langle \rangle \rangle$	$>\!\!<$
Up Af + Ag + Ap	1,820	#DIV/0!	2,640
•	1,820 1,820	#DIV/0!	2,640 2,640
Af + Ag + Ap	· ·	#DIV/0!	
Af + Ag + Ap Hors tout L x H	1,820	#DIV/0!	2,640
Af + Ag + Ap Hors tout L x H Af rives	1,820 0,320	#DIV/0!	2,640 0,518
Af + Ag + Ap Hors tout L x H Af rives Af TH	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI Af Bat	1,820 0,320 0,110 0,110		2,640 0,518 0,095 0,084

λ= 0,13

Flixo v8

Int.: Thermix TX pro (DV36)

		U	w	
Lie	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
Ug		Appul bols		
0,5				
0,6				
0,7				
0,8				
0,9				
1	0,054	1,3	#DIV/0!	1,3
1,1	0,054	1,4	#DIV/0!	1,4
1,2	0,054	1,5	#DIV/0!	1,5
1,3	0,054	1,5	#DIV/0!	1,5
1,4	0,054	1,6	#DIV/0!	1,6
1,5	0,054	1,7	#DIV/0!	1,7
1,6	0,054	1,7	#DIV/0!	1,8
1,7	0,054	1,8	#DIV/0!	1,8
1,8	0,054	1,9	#DIV/0!	1,9
1,9	0,054	1,9	#DIV/0!	2
2	0,054	2	#DIV/0!	2,1
2,1	0,054	2,1	#DIV/0!	2,1
2,2	0,054	2,2	#DIV/0!	2,2
2,3	0,054	2,2	#DIV/0!	2,3

		TLw	
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,4	0,28	#DIV/0!	0,29
0,5	0,35	#DIV/0!	0,37
0,6	0,42	#DIV/0!	0,44
0,7	0,49	#DIV/0!	0,51
0,73	0,51	#DIV/0!	0,54
0,78	0,55	#DIV/0!	0,57
0,8	0,56	#DIV/0!	0,59
0,81	0,57	#DIV/0!	0,60
0,9	0,63	#DIV/0!	0,66

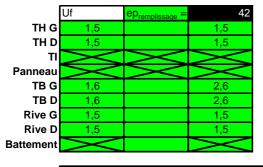
	Sw selo	n Sg et α	Fenêtre 1 Vantail Appui bois		oui bois
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,43	0,44	0,44
	0,7	0,50	0,50	0,51	0,51

	Sw selo	n Sg et α			
	α	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selo	n Sg et α	PI	1 Vtl Seuil a	lu
Γ	α	0,4	0,6	0,8	1
	0,2	0,15	0,16	0,16	0,17
	0,3	0,23	0,23	0,24	0,24
	0,4	0,30	0,31	0,31	0,31
	0,5	0,38	0,38	0,38	0,39
Sg	0,52	0,39	0,39	0,40	0,40
	0,54	0,40	0,41	0,41	0,42
	0,58	0,43	0,44	0,44	0,45
	0,6	0,45	0,45	0,46	0,46
	0,7	0,52	0,53	0,53	0,53

Plans (refs, date): plans du 16/11/2022

Flixo v8


λ= 0,13

Int.: Thermix TX pro (TV)

INSTITUT TECHNOLOGIQUI

CLIENT : ARBOR Produit : 58NF

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
TH G	108		108
TH D	108		108
TI	\bigvee	\bigvee	$>\!\!<$
_			
Panneau	\langle	\langle	
Panneau TB G	108		95
	108 108		95 95
TB G			
TB G TB D	108		95

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2180
largeur hors-tout:	1250		1250
Hauteur verre	1264		1977
largeur verre	1034	#DIV/0!	1034
Ag	1,307	#DIV/0!	2,044
Af	0,543		0,681
Ар	\bigvee	\bigvee	\sim
Up	\bigvee	\mathbb{X}	$>\!\!<$
Up Af + Ag + Ap	1,850	#DIV/0!	2,725
•	1,850 1,850	#DIV/0!	2,725 2,725
Af + Ag + Ap	· ·	#DIV/0!	
Af + Ag + Ap Hors tout L x H	1,850	#DIV/0!	2,725
Af + Ag + Ap Hors tout L x H Af rives	1,850 0,320	#DIV/0!	2,725 0,471
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,850 0,320 0,112	#DIV/0!	2,725 0,471 0,112
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI Af Bat	1,850 0,320 0,112 0,112		2,725 0,471 0,112 0,098

	Uw				
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu	
0,5					
0,6	0,039	0,97	#DIV/0!	0,95	
0,7	0,039	1	#DIV/0!	1	
0,8	0,039	1,1	#DIV/0!	1,1	
0,9	0,039	1,2	#DIV/0!	1,2	
1	0,039	1,2	#DIV/0!	1,3	
1,1	0,039	1,3	#DIV/0!	1,3	
1,2	0,039	1,4	#DIV/0!	1,4	
1,3	0,039	1,5	#DIV/0!	1,5	
1,4	0,039	1,5	#DIV/0!	1,6	
1,5	0,039	1,6	#DIV/0!	1,6	
1,6	0,039	1,7	#DIV/0!	1,7	
1,7	0,039	1,7	#DIV/0!	1,8	
1,8	0,039	1,8	#DIV/0!	1,9	
1,9	0,039	1,9	#DIV/0!	1,9	
2	0,039	2	#DIV/0!	2	
2,1	0,039	2	#DIV/0!	2,1	
2,2	0,039	2,1	#DIV/0!	2,2	
2,3	0,039	2,2	#DIV/0!	2,2	

	TLw				
Tie	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
Tig		"D" ((a)			
0,4	0,28	#DIV/0!	0,30		
0,5	0,35	#DIV/0!	0,38		
0,6	0,42	#DIV/0!	0,45		
0,7	0,49	#DIV/0!	0,53		
0,73	0,52	#DIV/0!	0,55		
0,78	0,55	#DIV/0!	0,59		
0,8	0,57	#DIV/0!	0,60		
0,81	0,57	#DIV/0!	0,61		
0,9	0,64	#DIV/0!	0,68		

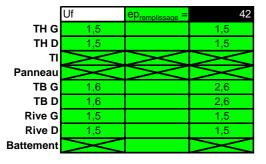
	Sw selon Sg et α		Fenêtre 1 Vantail Appui bois		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,43	0,44	0,44
	0,7	0,50	0,51	0,51	0,51

	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selon Sg et α		PF 1 Vtl Seuil alu		
	α	0,4	0,6	0,8	1
	0,2	0,16	0,16	0,16	0,17
	0,3	0,23	0,23	0,24	0,24
	0,4	0,31	0,31	0,31	0,32
	0,5	0,38	0,39	0,39	0,39
Sg	0,52	0,40	0,40	0,40	0,41
	0,54	0,41	0,42	0,42	0,42
	0,58	0,44	0,45	0,45	0,45
	0,6	0,46	0,46	0,46	0,47
	0,7	0,53	0,54	0,54	0,54

Plans (refs, date): plans du 16/11/2022

Flixo v8


λ= 0,13

Int.: Thermix TX pro (TV)

INSTITUT TECHNOLOGIQUE

CLIENT : ARBOR
Produit : 58NF

Fenêtre 1 PF 1 Vtl Vantail Seuil alu Appui bois 108 TH G 108 TH D 108 108 TI Panneau TB G 108 95 TB D 108 95 Rive G 108 108 Rive D 108 108 Battement

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар	\bigvee	\bigvee	\sim
Up	$>\!\!<$	$>\!\!<$	$>\!\!<$
Up Af + Ag + Ap	1,820	#DIV/0!	2,640
•	1,820 1,820	#DIV/0!	2,640 2,640
Af + Ag + Ap	· ·	#DIV/0!	
Af + Ag + Ap Hors tout L x H	1,820	#DIV/0!	2,640
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,820 0,320	#DIV/0!	2,640 0,518
Af + Ag + Ap Hors tout L x H Af rives Af TH	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB	1,820 0,320 0,110		2,640 0,518 0,095 0,084
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI	1,820 0,320 0,110	#DIV/0!	2,640 0,518 0,095
Af + Ag + Ap Hors tout L x H Af rives Af TH Af TB Af TI Af Bat	1,820 0,320 0,110 0,110 1,520 4,556		2,640 0,518 0,095 0,084 1,632 6,162

	Uw				
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu	
0,5					
0,6	0,039	0,97	#DIV/0!	0,96	
0,7	0,039	1	#DIV/0!	1	
0,8	0,039	1,1	#DIV/0!	1,1	
0,9	0,039	1,2	#DIV/0!	1,2	
1	0,039	1,3	#DIV/0!	1,3	
1,1	0,039	1,3	#DIV/0!	1,3	
1,2	0,039	1,4	#DIV/0!	1,4	
1,3	0,039	1,5	#DIV/0!	1,5	
1,4	0,039	1,5	#DIV/0!	1,6	
1,5	0,039	1,6	#DIV/0!	1,6	
1,6	0,039	1,7	#DIV/0!	1,7	
1,7	0,039	1,7	#DIV/0!	1,8	
1,8	0,039	1,8	#DIV/0!	1,8	
1,9	0,039	1,9	#DIV/0!	1,9	
2	0,039	2	#DIV/0!	2	
2,1	0,039	2	#DIV/0!	2,1	
2,2	0,039	2,1	#DIV/0!	2,1	
2,3	0,039	2,2	#DIV/0!	2,2	

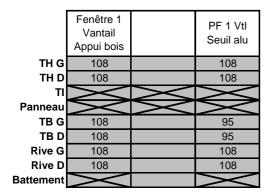
	TLw				
Tie	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
Tig		"D" ((a)			
0,4	0,28	#DIV/0!	0,29		
0,5	0,35	#DIV/0!	0,37		
0,6	0,42	#DIV/0!	0,44		
0,7	0,49	#DIV/0!	0,51		
0,73	0,51	#DIV/0!	0,54		
0,78	0,55	#DIV/0!	0,57		
0,8	0,56	#DIV/0!	0,59		
0,81	0,57	#DIV/0!	0,60		
0,9	0,63	#DIV/0!	0,66		

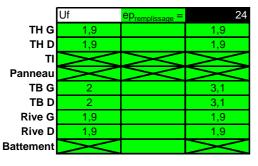
	Sw selon Sg et α		Fenêtre 1 Vantail Appui bois		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,38
	0,54	0,39	0,39	0,39	0,40
	0,58	0,42	0,42	0,42	0,43
	0,6	0,43	0,43	0,44	0,44
	0,7	0,50	0,50	0,51	0,51

	Sw selo	n Sg et α			
	α	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selon Sg et α		PF 1 Vtl Seuil alu		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,16	0,16	0,16
	0,3	0,23	0,23	0,23	0,24
	0,4	0,30	0,30	0,31	0,31
	0,5	0,37	0,38	0,38	0,39
Sg	0,52	0,39	0,39	0,40	0,40
	0,54	0,40	0,41	0,41	0,41
	0,58	0,43	0,44	0,44	0,44
	0,6	0,45	0,45	0,46	0,46
	0,7	0,52	0,53	0,53	0,53

Flixo v8


 $\lambda = 0.18$


Fenêtre 1

Int.: Thermix TX pro (DV24)

CLIENT: ARBOR Produit: 58NF Plans (refs, date): du 16/11/2022

INSTITUT TECHNOLOGIQUE

	Vantail		PFIVII	
	Appui bois		Seuil alu	
nombre vantaux n :	1		1	
hauteur hors tout:	1480		2180	
largeur hors-tout:	1250		1250	
Hauteur verre	1264		1977	
largeur verre	1034	#DIV/0!	1034	
Ag	1,307	#DIV/0!	2,044	
Af	0,543		0,681	
Ар	\bigvee	\bigvee	$\langle \langle \rangle \rangle$	
Up	\bigvee	\langle	$>\!\!<$	
Af + Ag + Ap	1,850	#DIV/0!	2,725	
Hors tout L x H	1,850		2,725	
Af rives	0,320		0,471	
Af TH	0,112		0,112	
Af TB	0,112		0,098	
Af TI	$>\!\!<$	$>\!\!<$	$>\!\!<$	
Af Bat	$>\!\!<$			
Uf moyen	1,921	#DIV/0!	2,073	
lg	4,596	#DIV/0!	6,022	
Ψg:	Thermix TX pro (DV24)			

	Uw				
Lla	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu	
Ug		Appul bols			
0,5					
0,6					
0,7					
0,8					
0,9					
1					
1,1	0,041	1,4	#DIV/0!	1,4	
1,2	0,041	1,5	#DIV/0!	1,5	
1,3	0,041	1,6	#DIV/0!	1,6	
1,4	0,041	1,7	#DIV/0!	1,7	
1,5	0,041	1,7	#DIV/0!	1,7	
1,6	0,041	1,8	#DIV/0!	1,8	
1,7	0,041	1,9	#DIV/0!	1,9	
1,8	0,041	1,9	#DIV/0!	2	
1,9	0,041	2	#DIV/0!	2	
2	0,041	2,1	#DIV/0!	2,1	
2,1	0,041	2,1	#DIV/0!	2,2	
2,2	0,041	2,2	#DIV/0!	2,3	
2,3	0,041	2,3	#DIV/0!	2,3	

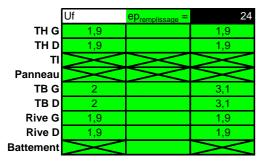
	TLw				
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
0,4	0,28	#DIV/0!	0,30		
0,5	0,35	#DIV/0!	0,38		
0,6	0,42	#DIV/0!	0,45		
0,7	0,49	#DIV/0!	0,53		
0,73	0,52	#DIV/0!	0,55		
0,78	0,55	#DIV/0!	0,59		
0,8	0,57	#DIV/0!	0,60		
0,81	0,57	#DIV/0!	0,61		
0,9	0,64	#DIV/0!	0,68		

	Sw selon Sg et α Fenêtre 1 Vantail Appui bois		oui bois		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,23	0,23	0,23
	0,4	0,29	0,30	0,30	0,31
	0,5	0,36	0,37	0,37	0,38
Sg	0,52	0,38	0,38	0,39	0,39
	0,54	0,39	0,40	0,40	0,40
	0,58	0,42	0,42	0,43	0,43
	0,6	0,43	0,44	0,44	0,45
	0,7	0,50	0,51	0,51	0,52

	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

Γ	Sw selon Sg et α		PF 1 Vtl Seuil alu		
	α	0,4	0,6	0,8	1
	0,2	0,16	0,16	0,17	0,17
	0,3	0,23	0,24	0,24	0,25
	0,4	0,31	0,31	0,32	0,32
	0,5	0,38	0,39	0,39	0,40
Sg	0,52	0,40	0,40	0,41	0,41
	0,54	0,41	0,42	0,42	0,43
	0,58	0,44	0,45	0,45	0,46
	0,6	0,46	0,46	0,47	0,47
	0,7	0,53	0,54	0,54	0,55

Flixo v8


 $\lambda = 0.18$

Int.: Thermix TX pro (DV24)

CLIENT: ARBOR Produit: 58NF

Plans (refs, date): du 16/11/2022

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
TH G	108		108
TH D	108		108
TI	\bigvee	\bigvee	\searrow
Panneau	\bigvee	\bigvee	\gg
TB G	108		95
TB D	108		95
Rive G	108		108
Rive D	108		108
Battement	\bigvee		\searrow

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар		\bigvee	
Up		\bigvee	
Af + Ag + Ap	1,820	#DIV/0!	2,640
Hors tout L x H	1,820		2,640
Af rives	0,320		0,518
Af TH	0,110		0,095
Af TB	0,110		0,084
Af TI		\bigvee	
Af Bat			
Uf moyen	1,920	#DIV/0!	2,044
lg	4,556	#DIV/0!	6,162
Ψg :	Ther	mix TX pro (D	V24)

		U	w	
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5				
0,6				
0,7				
0,8				
0,9				
1				
1,1	0,041	1,4	#DIV/0!	1,4
1,2	0,041	1,5	#DIV/0!	1,5
1,3	0,041	1,6	#DIV/0!	1,6
1,4	0,041	1,7	#DIV/0!	1,7
1,5	0,041	1,7	#DIV/0!	1,7
1,6	0,041	1,8	#DIV/0!	1,8
1,7	0,041	1,9	#DIV/0!	1,9
1,8	0,041	1,9	#DIV/0!	2
1,9	0,041	2	#DIV/0!	2
2	0,041	2,1	#DIV/0!	2,1
2,1	0,041	2,1	#DIV/0!	2,2
2,2	0,041	2,2	#DIV/0!	2,3
2,3	0,041	2,3	#DIV/0!	2,3

	TLw				
Tlg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
0,4	0,28	#DIV/0!	0,29		
0,5	0,35	#DIV/0!	0,37		
0,6	0,42	#DIV/0!	0,44		
0,7	0,49	#DIV/0!	0,51		
0,73	0,51	#DIV/0!	0,54		
0,78	0,55	#DIV/0!	0,57		
0,8	0,56	#DIV/0!	0,59		
0,81	0,57	#DIV/0!	0,60		
0,9	0,63	#DIV/0!	0,66		

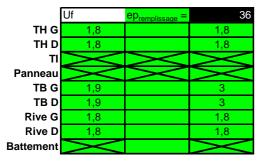
	Sw selon Sg et α Fenêtre 1 Vantail Appui b			oui bois	
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,30	0,30	0,30
	0,5	0,36	0,37	0,37	0,37
Sg	0,52	0,38	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,43	0,43
	0,6	0,43	0,44	0,44	0,45
	0,7	0,50	0,51	0,51	0,52

	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selon Sg et α		PF 1 Vtl Seuil alu			
	α	0,4	0,6 0,8 1			
	0,2	0,16	0,16	0,16	0,17	
	0,3	0,23	0,23	0,24	0,24	
	0,4	0,30	0,31	0,31	0,32	
	0,5	0,38	0,38	0,39	0,39	
Sg	0,52	0,39	0,40	0,40	0,40	
	0,54	0,41	0,41	0,41	0,42	
	0,58	0,44	0,44	0,44	0,45	
	0,6	0,45	0,45	0,46	0,46	
	0,8	0,60	0,60	0,61	0,61	

2/2

Flixo v8


λ= 0,18

Int.: Thermix TX pro (DV36)

CLIENT: ARBOR
Produit: 58NF
Plans (refs, date): du 16/11/2022

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
TH G	108		108
TH D	108		108
TI	\bigvee	\bigvee	$>\!\!<$
Panneau	\bigvee	\bigvee	$>\!\!<$
TB G	108		95
TB D	108		95
Rive G	108		108
Rive D	108		108
Battement	\bigvee		$>\!\!<$

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2180
largeur hors-tout:	1250		1250
Hauteur verre	1264		1977
largeur verre	1034	#DIV/0!	1034
Ag	1,307	#DIV/0!	2,044
Af	0,543		0,681
Ар	\bigvee	\bigvee	\sim
Up	\bigvee	\bigvee	\sim
Af + Ag + Ap	1,850	#DIV/0!	2,725
Hors tout L x H	1,850		2,725
Hors tout L x H Af rives	1,850 0,320		2,725 0,471
	·		
Af rives	0,320		0,471
Af rives Af TH	0,320 0,112		0,471 0,112
Af rives Af TH Af TB	0,320 0,112		0,471 0,112
Af rives Af TH Af TB Af TI	0,320 0,112	#DIV/0!	0,471 0,112
Af rives Af TH Af TB Af TI Af Bat	0,320 0,112 0,112	#DIV/0! #DIV/0!	0,471 0,112 0,098

	Uw				
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu	
0,5					
0,6					
0,7					
0,8					
0,9					
1	0,054	1,4	#DIV/0!	1,4	
1,1	0,054	1,4	#DIV/0!	1,4	
1,2	0,054	1,5	#DIV/0!	1,5	
1,3	0,054	1,6	#DIV/0!	1,6	
1,4	0,054	1,7	#DIV/0!	1,7	
1,5	0,054	1,7	#DIV/0!	1,7	
1,6	0,054	1,8	#DIV/0!	1,8	
1,7	0,054	1,9	#DIV/0!	1,9	
1,8	0,054	1,9	#DIV/0!	2	
1,9	0,054	2	#DIV/0!	2	
2	0,054	2,1	#DIV/0!	2,1	
2,1	0,054	2,2	#DIV/0!	2,2	
2,2	0,054	2,2	#DIV/0!	2,3	
2,3	0,054	2,3	#DIV/0!	2,3	

	TLw				
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
0,4	0.28	#DIV/0!	0,30		
0,5	0,35	#DIV/0!	0,38		
0,6	0,42	#DIV/0!	0,45		
0,7	0,49	#DIV/0!	0,53		
0,73	0,52	#DIV/0!	0,55		
0,78	0,55	#DIV/0!	0,59		
0,8	0,57	#DIV/0!	0,60		
0,81	0,57	#DIV/0!	0,61		
0,9	0,64	#DIV/0!	0,68		

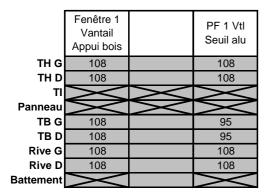
	Sw selon Sg et α		Fenêtre 1 Vantail Appui bois		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,30	0,30	0,30
	0,5	0,36	0,37	0,37	0,37
Sg	0,52	0,38	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,43	0,43
	0,6	0,43	0,44	0,44	0,45
	0,7	0,50	0,51	0,51	0,52

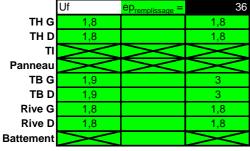
	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

Γ	Sw selon Sg et α		PF 1 Vtl Seuil alu			
	α	0,4	0,4 0,6 0,8 1			
	0,2	0,16	0,16	0,17	0,17	
	0,3	0,23	0,24	0,24	0,24	
	0,4	0,31	0,31	0,32	0,32	
	0,5	0,38	0,39	0,39	0,39	
Sg	0,52	0,40	0,40	0,41	0,41	
	0,54	0,41	0,42	0,42	0,42	
	0,58	0,44	0,45	0,45	0,45	
	0,6	0,46	0,46	0,47	0,47	
	0,7	0,53	0,54	0,54	0,54	

19/12/2022

Flixo v8


 $\lambda = 0.18$


Int.: Thermix TX pro (DV36)

CLIENT: ARBOR Produit: 58NF

Plans (refs, date): du 16/11/2022

INSTITUT TECHNOLOGIQUE

Dattement				ļ
		U	w	
	Ψg	Fenêtre 1 Vantail		PF 1 Vtl Seuil alu
Ug		Appui bois		
0,5				
0,6				
0,7				
0,8				
0,9				
1	0,054	1,4	#DIV/0!	1,4
1,1	0,054	1,4	#DIV/0!	1,4
1,2	0,054	1,5	#DIV/0!	1,5
1,3	0,054	1,6	#DIV/0!	1,6
1,4	0,054	1,7	#DIV/0!	1,7
1,5	0,054	1,7	#DIV/0!	1,7
1,6	0,054	1,8	#DIV/0!	1,8
1,7	0,054	1,9	#DIV/0!	1,9
1,8	0,054	1,9	#DIV/0!	2
1,9	0,054	2	#DIV/0!	2
2	0,054	2,1	#DIV/0!	2,1
2,1	0,054	2,2	#DIV/0!	2,2
2,2	0,054	2,2	#DIV/0!	2,3

	TLw				
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
0,4	0.28	#DIV/0!	0.20		
0,4	0,26	#DIV/U!	0,29		
0,5	0,35	#DIV/0!	0,37		
0,6	0,42	#DIV/0!	0,44		
0,7	0,49	#DIV/0!	0,51		
0,73	0,51	#DIV/0!	0,54		
0,78	0,55	#DIV/0!	0,57		
0,8	0,56	#DIV/0!	0,59		
0,81	0,57	#DIV/0!	0,60		
0,9	0,63	#DIV/0!	0,66		

2,3

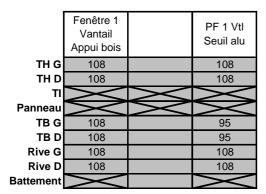
	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар		\bigvee	
Up		\bigvee	
Af + Ag + Ap	1,820	#DIV/0!	2,640
Hors tout L x H	1,820		2,640
Af rives	0,320		0,518
Af TH	0,110		0,095
Af TB	0,110		0,084
Af TI		\searrow	
Af Bat			
Uf moyen	1,820	#DIV/0!	1,944
lg	4,556	#DIV/0!	6,162
Ψ g :	Ther	mix TX pro (D	V36)

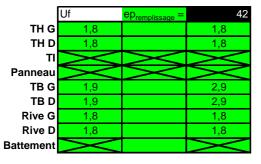
	Sw selon Sg et α		Fenêtre 1 Vantail Appui bois			
	α	0,4	0,6 0,8 1			
	0,2	0,15	0,15	0,16	0,16	
	0,3	0,22	0,22	0,23	0,23	
	0,4	0,29	0,29	0,30	0,30	
	0,5	0,36	0,36	0,37	0,37	
Sg	0,52	0,37	0,38	0,38	0,39	
	0,54	0,39	0,39	0,40	0,40	
	0,58	0,42	0,42	0,43	0,43	
	0,6	0,43	0,44	0,44	0,44	
	0,7	0,50	0,51	0,51	0,51	

	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selon Sg et α		PF 1 Vtl Seuil alu			
	α	0,4	0,6	0,8	1	
	0,2	0,16	0,16	0,16	0,17	
	0,3	0,23	0,23	0,24	0,24	
	0,4	0,30	0,31	0,31	0,31	
	0,5	0,38	0,38	0,38	0,39	
Sg	0,52	0,39	0,39	0,40	0,40	
	0,54	0,41	0,41	0,41	0,42	
	0,58	0,43	0,44	0,44	0,45	
	0,6	0,45	0,45	0,46	0,46	
	0,8	0,60	0,60	0,60	0,61	

Flixo v8


 $\lambda = 0.18$


Int.: Thermix TX pro (TV)

CLIENT: ARBOR Produit: 58NF

Plans (refs, date): du 16/11/2022

INSTITUT TECHNOLOGIQUE

	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2180
largeur hors-tout:	1250		1250
Hauteur verre	1264		1977
largeur verre	1034	#DIV/0!	1034
Ag	1,307	#DIV/0!	2,044
Af	0,543		0,681
Ар	$\langle \langle \rangle \rangle$	\bigvee	\mathbb{X}
Up	\bigvee	\bigvee	\bigvee
Af + Ag + Ap	1,850	#DIV/0!	2,725
Hors tout L x H			
HOIS TOUL EXTI	1,850		2,725
Af rives	1,850 0,320		2,725 0,471
	· · · · · · · · · · · · · · · · · · ·		
Af rives	0,320		0,471
Af rives Af TH	0,320 0,112		0,471 0,112
Af rives Af TH Af TB	0,320 0,112		0,471 0,112
Af rives Af TH Af TB Af TI	0,320 0,112	#DIV/0!	0,471 0,112
Af rives Af TH Af TB Af TI Af Bat	0,320 0,112 0,112 1,821 4,596	#DIV/0! #DIV/0! ermix TX pro (0,471 0,112 0,098 1,959 6,022

	Uw			
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5				
0,6	0,039	1,1	#DIV/0!	1
0,7	0,039	1,1	#DIV/0!	1,1
0,8	0,039	1,2	#DIV/0!	1,2
0,9	0,039	1,3	#DIV/0!	1,3
1	0,039	1,3	#DIV/0!	1,3
1,1	0,039	1,4	#DIV/0!	1,4
1,2	0,039	1,5	#DIV/0!	1,5
1,3	0,039	1,5	#DIV/0!	1,6
1,4	0,039	1,6	#DIV/0!	1,6
1,5	0,039	1,7	#DIV/0!	1,7
1,6	0,039	1,8	#DIV/0!	1,8
1,7	0,039	1,8	#DIV/0!	1,9
1,8	0,039	1,9	#DIV/0!	1,9
1,9	0,039	2	#DIV/0!	2
2	0,039	2	#DIV/0!	2,1
2,1	0,039	2,1	#DIV/0!	2,2
2,2	0,039	2,2	#DIV/0!	2,2
2,3	0,039	2,3	#DIV/0!	2,3

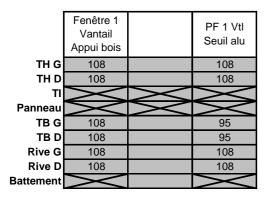
	TLw				
Tie	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
Tig					
0,4	0,28	#DIV/0!	0,30		
0,5	0,35	#DIV/0!	0,38		
0,6	0,42	#DIV/0!	0,45		
0,7	0,49	#DIV/0!	0,53		
0,73	0,52	#DIV/0!	0,55		
0,78	0,55	#DIV/0!	0,59		
0,8	0,57	#DIV/0!	0,60		
0,81	0,57	#DIV/0!	0,61		
0,9	0,64	#DIV/0!	0,68		

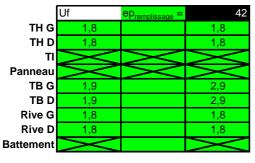
	Sw selon Sg et α Fenêtre 1 Vantail A		1 Vantail App	ppui bois	
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,30	0,30	0,30
	0,5	0,36	0,37	0,37	0,37
Sg	0,52	0,38	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,43	0,43
	0,6	0,43	0,44	0,44	0,45
	0,7	0,50	0,51	0,51	0,52

	Sw selon Sg et α				
	α	0,4	0,6	0,8	1
	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sg	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	Sw selon Sg et α		PF 1 Vtl Seuil alu			
Γ	α	0,4	0,6	0,8	1	
	0,2	0,16	0,16	0,17	0,17	
	0,3	0,23	0,24	0,24	0,24	
	0,4	0,31	0,31	0,32	0,32	
	0,5	0,38	0,39	0,39	0,39	
Sg	0,52	0,40	0,40	0,41	0,41	
	0,54	0,41	0,42	0,42	0,42	
	0,58	0,44	0,45	0,45	0,45	
	0,6	0,46	0,46	0,47	0,47	
	0,7	0,53	0,54	0,54	0,54	

Note de calcul: FCBA.IBC/2020.321 **CLIENT: ARBOR**


Flixo v8


 $\lambda = 0.18$

Int.: Thermix TX pro (TV)

Produit: 58NF Plans (refs, date): du 16/11/2022

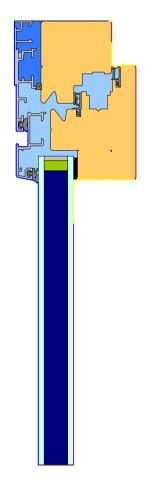
INSTITUT TECHNOLOGIQUE

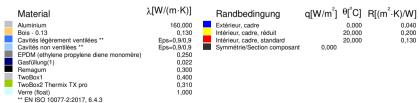
	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
nombre vantaux n :	1		1
hauteur hors tout:	1480		2400
largeur hors-tout:	1230		1100
Hauteur verre	1264		2197
largeur verre	1014	#DIV/0!	884
Ag	1,282	#DIV/0!	1,942
Af	0,539		0,698
Ар		\bigvee	
Up		\bigvee	
Af + Ag + Ap	1,820	#DIV/0!	2,640
Hors tout L x H	1,820		2,640
Af rives	0,320		0,518
Af TH	0,110		0,095
Af TB	0,110		0,084
Af TI		\bigvee	
Af Bat			
Uf moyen	1,820	#DIV/0!	1,932
lg	4,556	#DIV/0!	6,162
Ψg:	The	ermix TX pro (TV)

	Uw			
Ug	Ψg	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu
0,5				
0,6	0,039	1,1	#DIV/0!	1
0,7	0,039	1,1	#DIV/0!	1,1
0,8	0,039	1,2	#DIV/0!	1,2
0,9	0,039	1,3	#DIV/0!	1,3
1	0,039	1,3	#DIV/0!	1,3
1,1	0,039	1,4	#DIV/0!	1,4
1,2	0,039	1,5	#DIV/0!	1,5
1,3	0,039	1,6	#DIV/0!	1,6
1,4	0,039	1,6	#DIV/0!	1,6
1,5	0,039	1,7	#DIV/0!	1,7
1,6	0,039	1,8	#DIV/0!	1,8
1,7	0,039	1,8	#DIV/0!	1,9
1,8	0,039	1,9	#DIV/0!	1,9
1,9	0,039	2	#DIV/0!	2
2	0,039	2	#DIV/0!	2,1
2,1	0,039	2,1	#DIV/0!	2,1
2,2	0,039	2,2	#DIV/0!	2,2
2,3	0,039	2,3	#DIV/0!	2,3

	TLw				
Tig	Fenêtre 1 Vantail Appui bois		PF 1 Vtl Seuil alu		
0,4	0.28	#DIV/0!	0.20		
0,4	0,26	#DIV/U!	0,29		
0,5	0,35	#DIV/0!	0,37		
0,6	0,42	#DIV/0!	0,44		
0,7	0,49	#DIV/0!	0,51		
0,73	0,51	#DIV/0!	0,54		
0,78	0,55	#DIV/0!	0,57		
0,8	0,56	#DIV/0!	0,59		
0,81	0,57	#DIV/0!	0,60		
0,9	0,63	#DIV/0!	0,66		

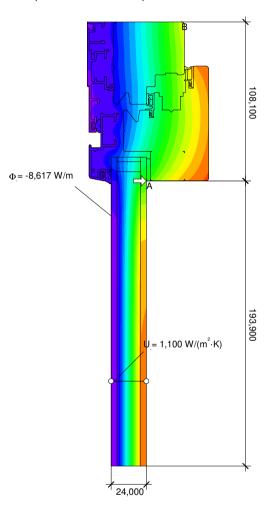
	Sw selon Sg et α		Fenêtre 1 Vantail Appui bois		
	α	0,4	0,6	0,8	1
	0,2	0,15	0,15	0,16	0,16
	0,3	0,22	0,22	0,23	0,23
	0,4	0,29	0,29	0,30	0,30
	0,5	0,36	0,36	0,37	0,37
Sg	0,52	0,37	0,38	0,38	0,39
	0,54	0,39	0,39	0,40	0,40
	0,58	0,42	0,42	0,43	0,43
	0,6	0,43	0,44	0,44	0,44
	0,7	0,50	0,51	0,51	0,51


	Sw selon Sg et α				
	ರ	0,4	0,6	0,8	1
Sg	0,2	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,3	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,4	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,52	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,54	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,6	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0,7	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!


	Sw selon Sg et α		PF 1 Vtl Seuil alu		
	α	0,4	0,6	0,8	1
	0,2	0,16	0,16	0,16	0,17
	0,3	0,23	0,23	0,24	0,24
	0,4	0,30	0,31	0,31	0,31
	0,5	0,38	0,38	0,38	0,39
Sg	0,52	0,39	0,39	0,40	0,40
	0,54	0,41	0,41	0,41	0,42
	0,58	0,43	0,44	0,44	0,45
	0,6	0,45	0,45	0,46	0,46
	0,8	0,60	0,60	0,60	0,61

ARBOR - 58NF - 24 mm - 0.13.flx Donnée Psi Thermix TX pro

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 24 mm - 0.13.flx Températures Psi Thermix TX pro

INSTITUT TECHNOLOGIQUE

$$\psi_{_{A}} \ = \frac{\Phi}{\Delta T} \ - \ U_{_{g}} \cdot b_{_{g}} - U_{_{f}} \cdot b_{_{f}} \ = \frac{8,617}{20,000} \ - \ 1,100 \cdot 0,194 \ - \ 1,634 \cdot 0,108 \ = \ 0,041 \ W/(m \cdot K)$$

0,040 0,200 0,130

0,000

20,000

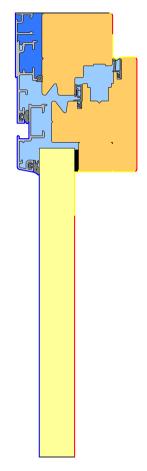
20,000 0.000

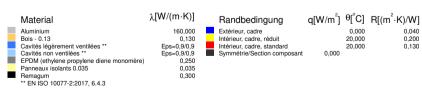
20,0 °C 18,0 °C

16,0 °C

14,0 °C

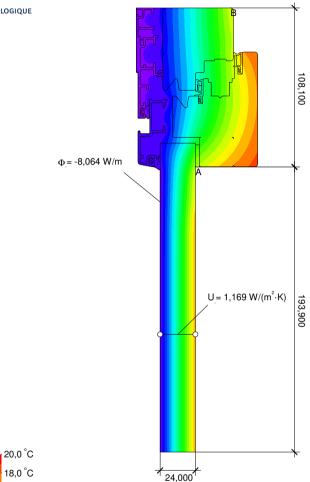
12,0 °C


10,0 °C


8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C

ARBOR - 58NF - 24 mm - 0.13.flx Donnée TH RI-24 mm

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 24 mm - 0.13.flx

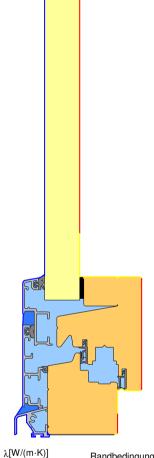
Températures TH_RI-24 mm

$$U_{_{1AB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{1}}} = \frac{\frac{8,064}{20,000} - 1,169 \cdot 0,194}{0,108} = 1,6 \text{ W/(m}^{2} \cdot \text{K)}$$

16,0 °C

14,0 °C

12,0 °C


10,0 °C
8,0 °C
6,0 °C
4,0 °C
2,0 °C
0,0 °C

ARBOR - 58NF - 24 mm - 0.13.flx

Donnée TB-24 mm

160,000

Eps=0,9/0,9

Eps=0,9/0,9

0,130

0,250 0,035 0,300

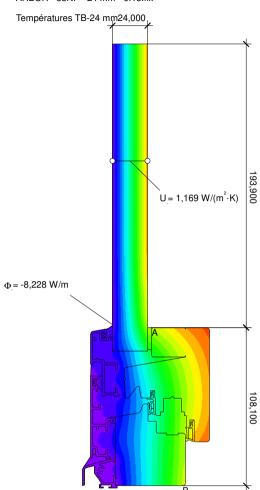
Material

Aluminium
Bois - 0.13
Cavités légèrement ventilées **
Cavités non ventilées **
EPDM (ethylene propylene diene monomère)
Panneaux isolants 0.035
Remagum
** EN ISO 10077-2:2017, 6.4.3

20,0 °C

18,0 °C

16,0 °C

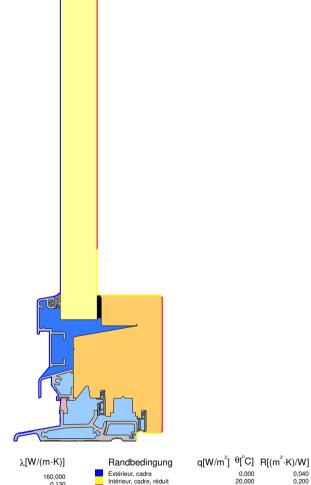

14,0 °C

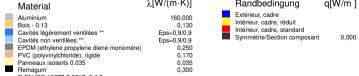
12,0 °C
10,0 °C
8,0 °C
6,0 °C
4,0 °C
2,0 °C
0,0 °C

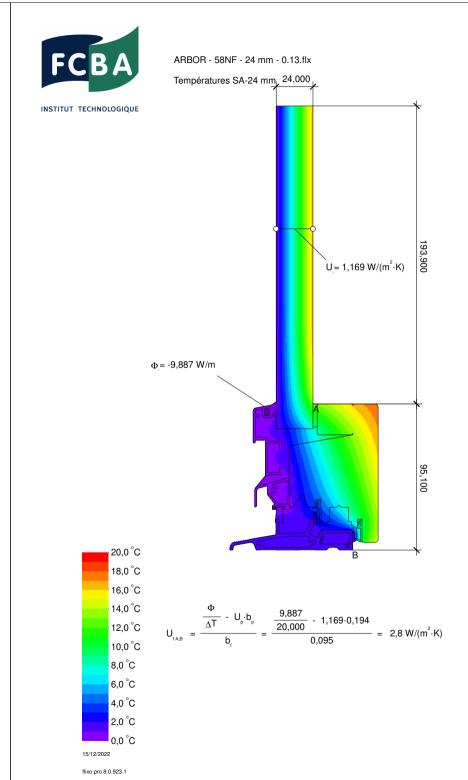
15/12/2022

flixo pro 8.0.923.1

ARBOR - 58NF - 24 mm - 0.13.flx


$$U_{_{fAB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{f}}} = \frac{\frac{8,228}{20,000} - 1,169 \cdot 0,194}{0,108} = 1,7 \text{ W/(m}^2 \cdot \text{K)}$$

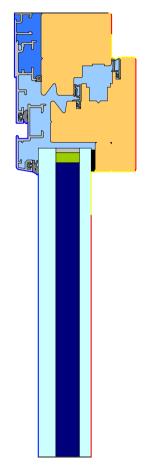


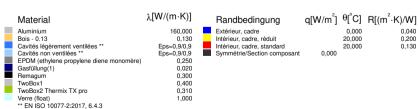

ARBOR - 58NF - 24 mm - 0.13.flx

Donnée SA-24 mm

** EN ISO 10077-2:2017, 6.4.3

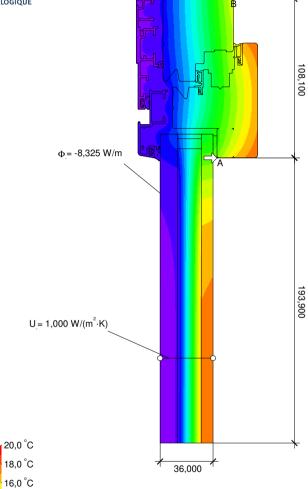
0,040 0,200


0,130


20,000

ARBOR - 58NF - 36 mm - 0.13.flx
Donnée Psi Thermix TX pro

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 36 mm - 0.13.flx

Températures Psi Thermix TX pro

INSTITUT TECHNOLOGIQUE

$$\psi_{\text{A}} \ = \frac{\Phi}{\Delta T} \ - \ U_{_{0}} \cdot b_{_{0}} - U_{_{1}} \cdot b_{_{1}} = \frac{8,325}{20,000} \ - \ 1,000 \cdot 0,194 \ - \ 1,559 \cdot 0,108 \ = \ 0,054 \ W/(m \cdot K)$$

15/12/2022

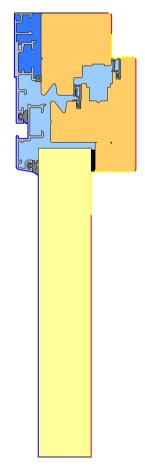
1

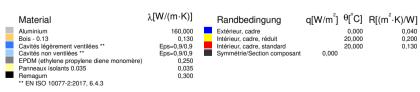
15/12/2022 flixo pro 8.0.923.1

14,0 °C

12,0 °C

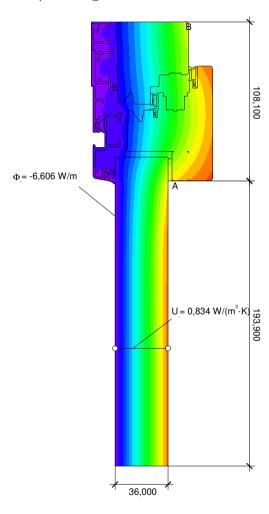
10,0 °C


8,0 °C 6,0 °C 4,0 °C 2,0 °C


2

ARBOR - 58NF - 36 mm - 0.13.flx Donnée TH RI-36 mm

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 36 mm - 0.13.flx

Températures TH_RI-36 mm

INSTITUT TECHNOLOGIQUE

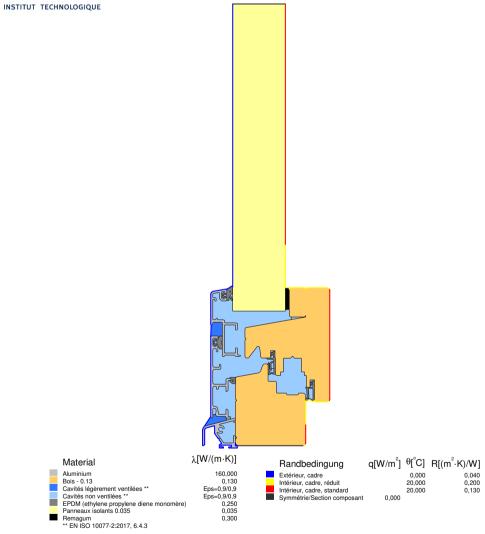
$$U_{_{1AB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{1}}} = \frac{\frac{6,606}{20,000} - 0,834 \cdot 0,194}{0,108} = 1,6 \text{ W/(m}^{2} \cdot \text{K)}$$

20,0 °C 18,0 °C

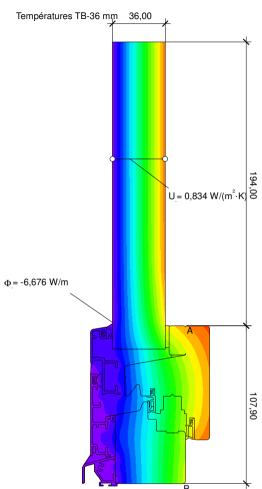
16,0 °C

14,0 °C

12,0 °C


10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C


ARBOR - 58NF - 36 mm - 0.13.flx

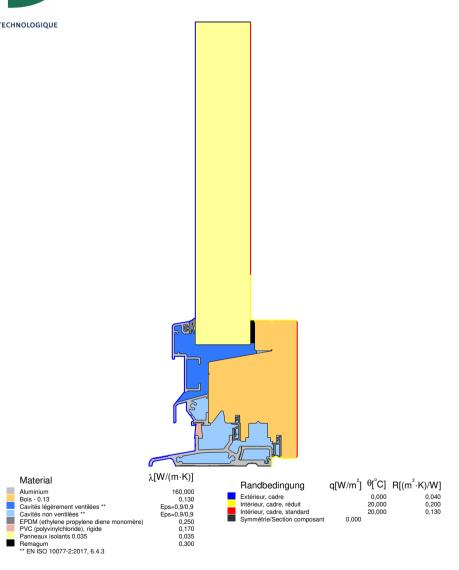

Donnée TB-36 mm

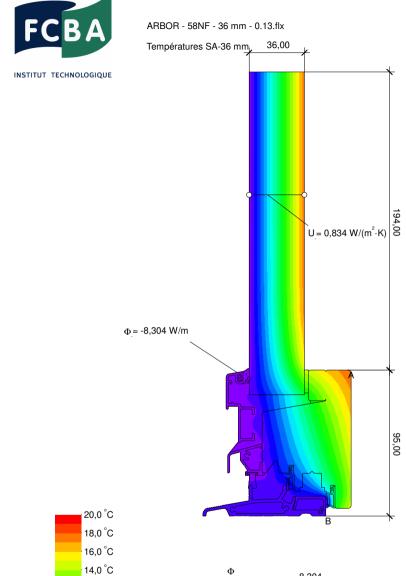
15/12/2022

flixo pro 8.0.923.1

20,0 °C

18,0 °C


$$U_{_{_{1A,B}}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{1}}} = \frac{\frac{6,676}{20,000} - 0,834 \cdot 0,194}{0,108} = 1,6 \text{ W/(m}^{^{2}} \cdot \text{K)}$$



ARBOR - 58NF - 36 mm - 0.13.flx

Donnée SA-36 mm

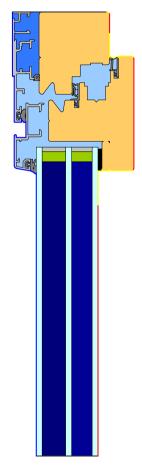
12,0 °C

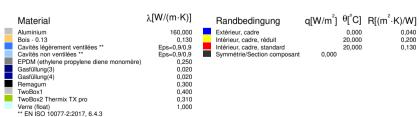
10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C

15/12/2022

flixo pro 8.0.923.1

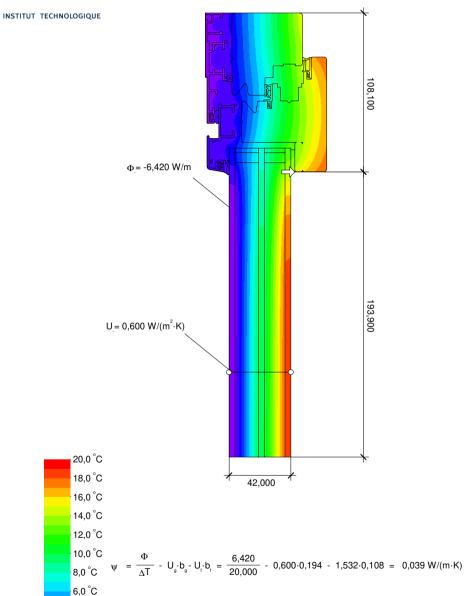
$$U_{_{IA,B}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{f}}} = \frac{\frac{8,304}{20,000} - 0,834 \cdot 0,194}{0,095} = 2,7 \text{ W/(m}^2 \cdot \text{K)}$$


Material


Remagum
** EN ISO 10077-2:2017, 6.4.3

ARBOR - 58NF - 42 mm - 0.13.flx Donnée Psi Thermix TX pro

INSTITUT TECHNOLOGIQUE

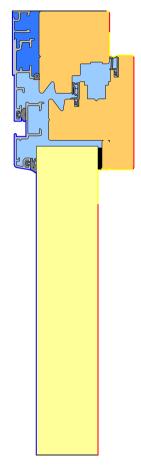


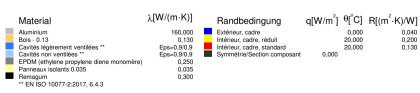
ARBOR - 58NF - 42 mm - 0.13.flx

Températures Psi Thermix TX pro

15/12/2022

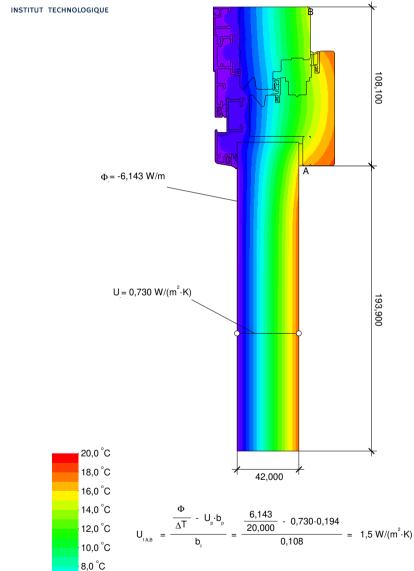
1


15/12/2022 flixo pro 8.0.923.1


4,0 °C 2,0 °C 0,0 °C

ARBOR - 58NF - 42 mm - 0.13.flx Donnée TH RI-42 mm

INSTITUT TECHNOLOGIQUE

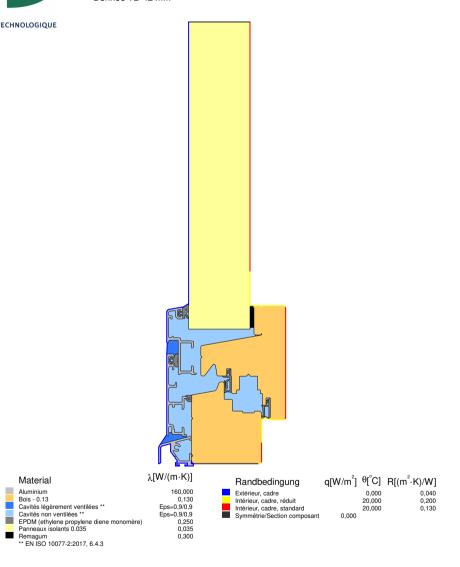

6,0 °C 4,0 °C 2,0 °C 0,0 °C

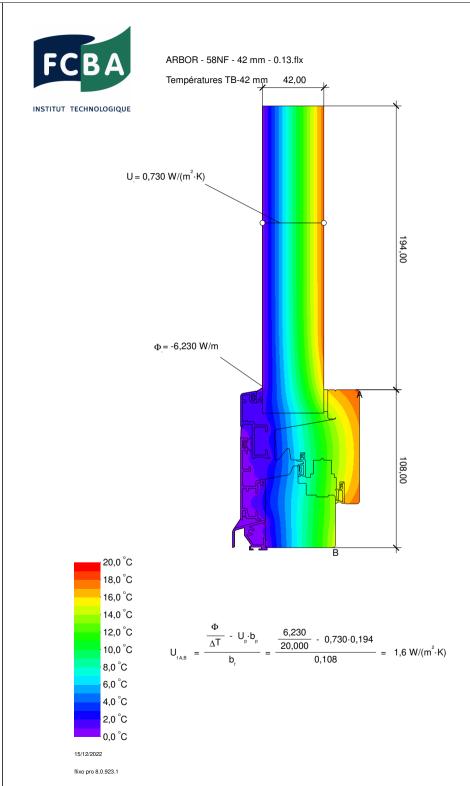
15/12/2022

flixo pro 8.0.923.1

ARBOR - 58NF - 42 mm - 0.13.flx

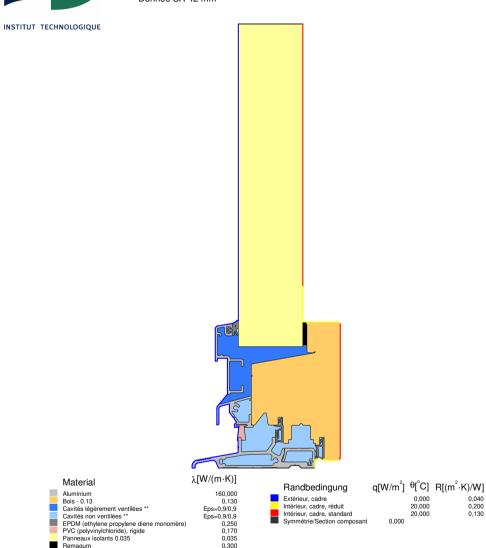
Températures TH_RI-42 mm





ARBOR - 58NF - 42 mm - 0.13.flx

Donnée TB-42 mm



Material

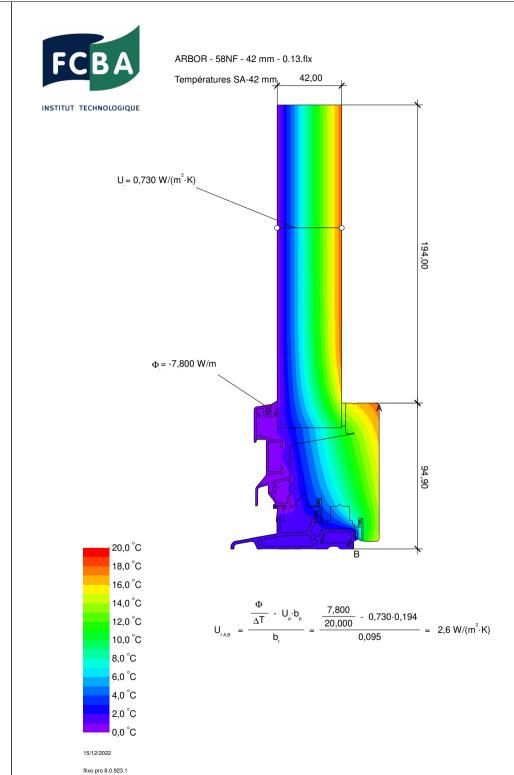
ARBOR - 58NF - 42 mm - 0.13.flx

Donnée SA-42 mm

Eps=0,9/0,9

Eps=0,9/0,9 0,250 0,170

0,035


0,300

Extérieur, cadre

Intérieur, cadre, réduit

Intérieur, cadre, standard

Symmétrie/Section composant

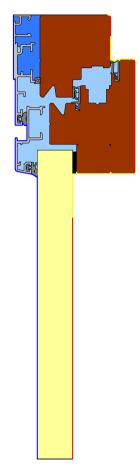
Remagum
** EN ISO 10077-2:2017, 6.4.3

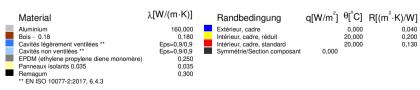
0,040

0,200

0,000

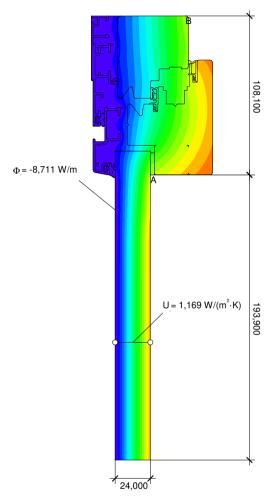
20,000


20,000


0,000

ARBOR - 58NF - 24 mm - 0.18.flx Donnée TH RI-24 mm

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 24 mm - 0.18.flx

Températures TH_RI-24 mm

$$U_{fAB} = \frac{\frac{\Phi}{\Delta T} - U_{p} \cdot b_{p}}{b_{c}} = \frac{\frac{8,711}{20,000} - 1,169 \cdot 0,194}{0,108} = 1,9 \text{ W/(m}^{2} \cdot \text{K)}$$

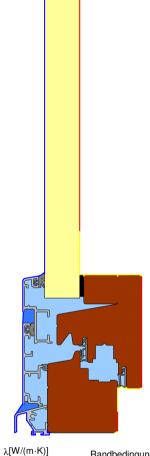
20,0 °C 18,0 °C

16,0 °C

14,0 °C

12,0 °C

10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C


flixo pro 8.0.923.1

ARBOR - 58NF - 24 mm - 0.18.flx

Donnée TB-24 mm

INSTITUT TECHNOLOGIQUE

160,000

Eps=0,9/0,9

Eps=0,9/0,9

0,180

0,250 0,035 0,300

Material

Aluminium
Bois - 0.18

Cavités légèrement ventilées **
Cavités non ventilées **
EPDM (ethylene propylene diene monomère)
Panneaux isolants 0.035

Remagum
** EN ISO 10077-2:2017, 6.4.3

Randbedingung q[W/m²] θ[°C] R[(m²⋅K)/W]

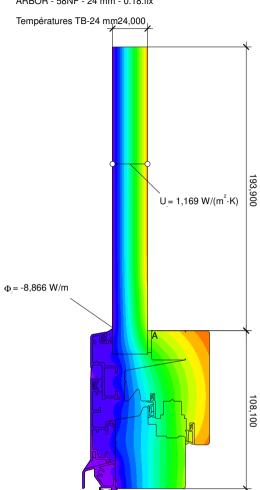
■ Extérieur, cadre
Intérieur, cadre, réduit 10,000 0,000 0,200 1ntérieur, cadre, standard 5ymmétrie/Section composant 0,000 0,000

20,0 °C

18,0 °C

16,0 °C

14,0 °C

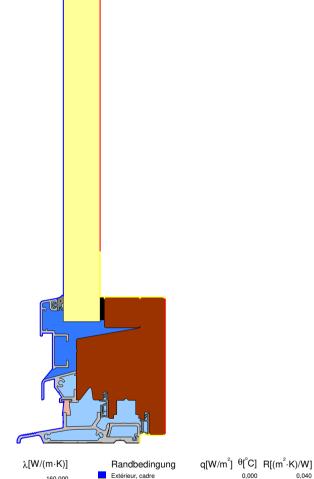

12,0 °C

10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C

15/12/2022

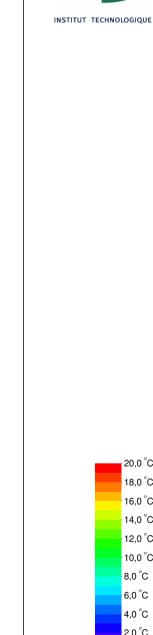
flixo pro 8.0.923.1

ARBOR - 58NF - 24 mm - 0.18.flx


$$U_{_{1AB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{1}}} = \frac{\frac{8,866}{20,000} - 1,169 \cdot 0,194}{0,108} = 2,0 \text{ W/(m}^{2} \cdot \text{K)}$$

ARBOR - 58NF - 24 mm - 0.18.flx

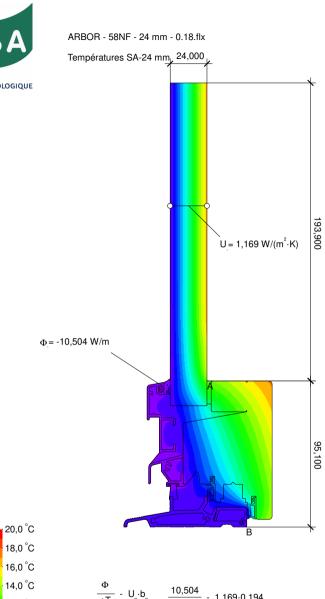
Donnée SA-24 mm


Intérieur, cadre, réduit

Intérieur, cadre, standard

Symmétrie/Section composant

Eps=0,9/0,9 0,250 0,170 0,035 ** EN ISO 10077-2:2017, 6.4.3


20,0 °C

12,0 °C

10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C

15/12/2022

flixo pro 8.0.923.1

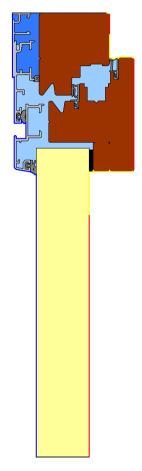
$$U_{fAB} = \frac{\frac{\Phi}{\Delta T} - U_{p} \cdot b_{p}}{b_{c}} = \frac{\frac{10,504}{20,000} - 1,169 \cdot 0,194}{0,095} = 3,1 \text{ W/(m}^{2} \cdot \text{K)}$$

Remagum

0,200

0,130

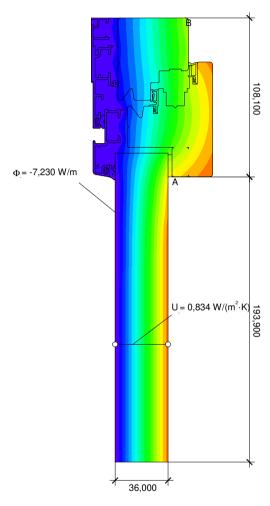
20,000


20,000

0,000

ARBOR - 58NF - 36 mm - 0.18.flx Donnée TH RI-36 mm

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 36 mm - 0.18.flx

Températures TH_RI-36 mm

$$U_{_{IAB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{r}}} = \frac{\frac{7,230}{20,000} - 0,834 \cdot 0,194}{0,108} = 1,8 \text{ W/(m}^2 \cdot \text{K)}$$

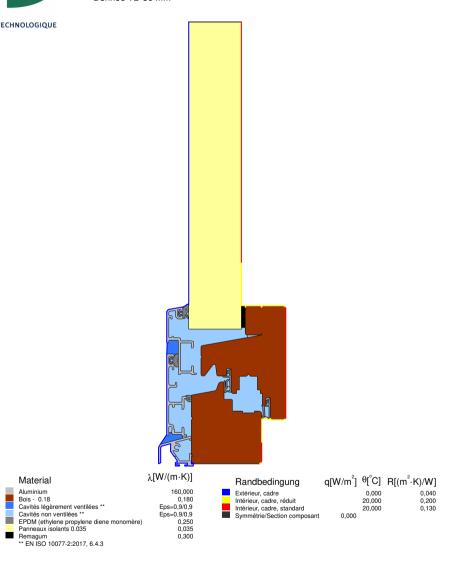
15/12/2022

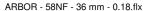
20,0 °C 18,0 °C

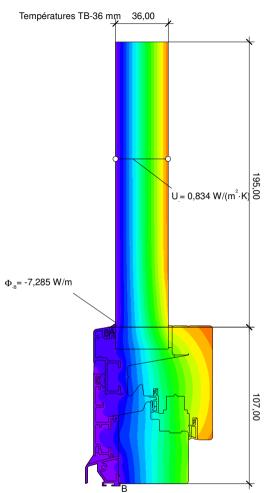
16,0 °C

14,0 °C

12,0 °C


10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C


ARBOR - 58NF - 36 mm - 0.18.flx


Donnée TB-36 mm

15/12/2022 flixo pro 8.0.923.1

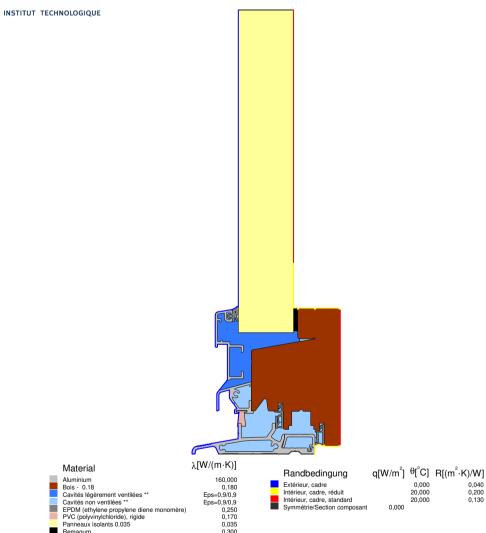
0,0 °C

20,0 °C

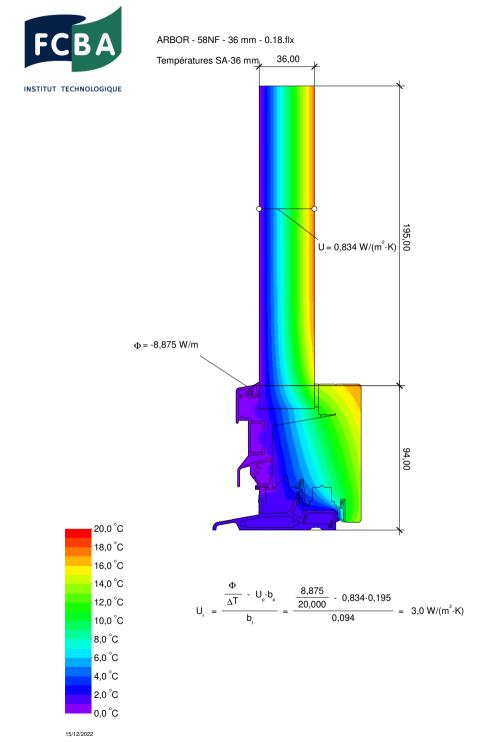
18,0 °C

3

15/12/2022 flixo pro 8.0.923.1


Material

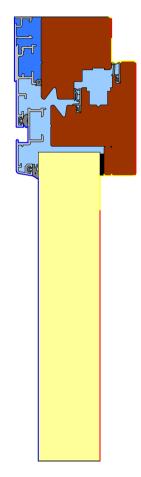
Remagum
** EN ISO 10077-2:2017, 6.4.3

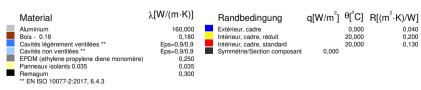


ARBOR - 58NF - 36 mm - 0.18.flx

Donnée SA-36 mm

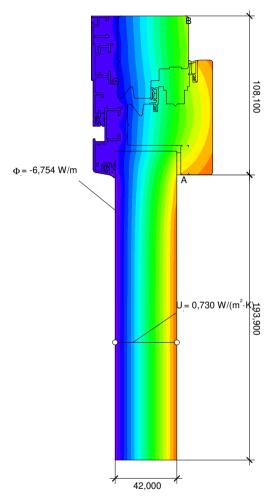
0,300


flixo pro 8.0.923.1


Remagum
** EN ISO 10077-2:2017, 6.4.3

ARBOR - 58NF - 42 mm - 0.18.flx Donnée TH RI-42 mm

INSTITUT TECHNOLOGIQUE



ARBOR - 58NF - 42 mm - 0.18.flx

Températures TH_RI-42 mm

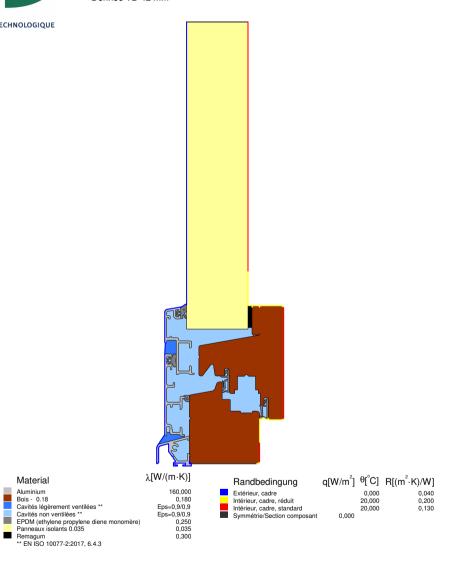
$$U_{_{IAB}} = \frac{\frac{\Phi}{\Delta T} - U_{_{p}} \cdot b_{_{p}}}{b_{_{r}}} = \frac{\frac{6,754}{20,000} - 0,730 \cdot 0,194}{0,108} = 1,8 \text{ W/(m}^2 \cdot \text{K)}$$

20,0 °C 18,0 °C

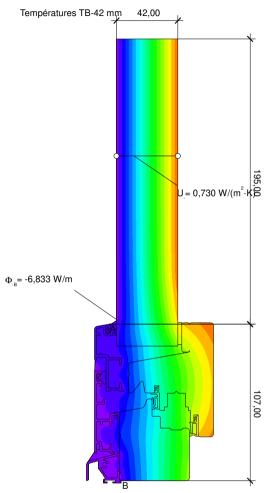
16,0 °C

14,0 °C

12,0 °C


10,0 °C 8,0 °C 6,0 °C 4,0 °C 2,0 °C 0,0 °C

ARBOR - 58NF - 42 mm - 0.18.flx


Donnée TB-42 mm

INSTITUT TECHNOLOGIQUE

ARBOR - 58NF - 42 mm - 0.18.flx

20,0 °C

18,0 °C

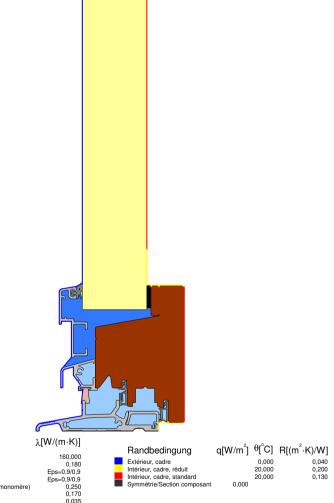
0,0 °C

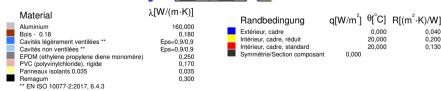
15/12/2022

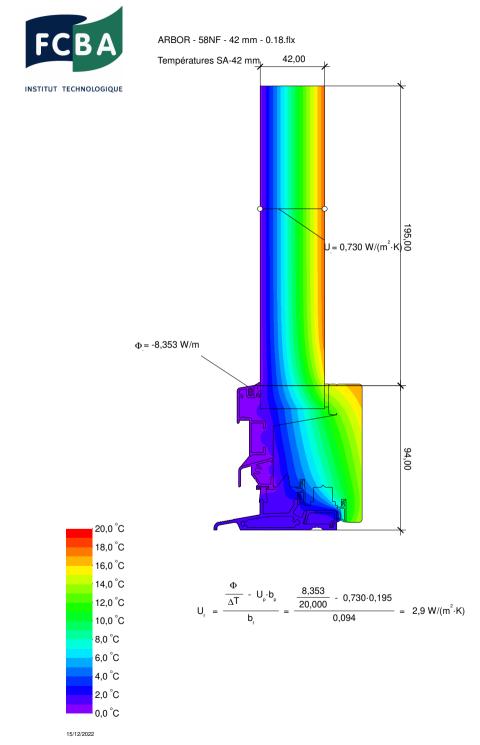
flixo pro 8.0.923.1

Material

Aluminium
Bois - 0.18
Cavités légèrement ventilées **


Remagum
** EN ISO 10077-2:2017, 6.4.3




ARBOR - 58NF - 42 mm - 0.18.flx

Donnée SA-42 mm

flixo pro 8.0.923.1

Double vitrage -24mm

Configuration	Verre 1	Verre 2	Lumière Visible			Énergie Solaire				Propriétés Thermiques			Rapport de la	
			Transmi ssion	Réflec	tance	Transmi ssion	Réflecta nce	de gain de Coefficient	Coefficient	Coefficient				lumière au gain
				visible (τ _V %)	ρ _V % ext	ρ _V % int	solaire (τ _e %)	ρ _e % ext	chaleur solaire (SHGC)	d'atténuatio n (sc)	Nuit hivernale (W/m²-K)	Journée estivale (W/m²-K)	Valeur R	solaire (rapport LSG)
Dou	ıble vitrage 24mm	ClimaG uard® Premiu m2 T (CE) sur Guardia n ExtraCl ear (CE)	Guardia n ExtraCI ear (CE)	81	13	13	55	31	0,58	0,67	1,423	1,060	0,70	1,40

Evtáriour

Norme de calcul : NFRC 2010

Double vitrage 24mm

			Exterieur							
SUBSTRAT	Guard	ian ExtraClear (CE)	#1							
1	Épaiss	seur = 4 mm	#2 ClimaGuard® Premium2 T (CE)							
LAME DE GAZ 1		100% Argon, 16 mm (,630")								
SUBSTRAT	Guard	ian ExtraClear (CE)	#3							
2	Épaiss	seur = 4 mm	#4							
	Total l	Jnit (Nominal) = 15/16 en / 24 mm	Inclinaison = 90°	Hauteur de fenêtre = 1 mètre						
	Poids	du vitrage nominal estimé : 19,19 kg/m²								

Remarques importantes

Calculations and terms in this report are based on NFRC 2010. The performance values shown above represent nominal values for the center of glass with no spacer system or framing.

Intérieur

Produits laminées:

Le Performance Calculator permet à l'utilisateur de modéliser une grande variété de combinaison en verre feuilleté en utilisant différents substrats en verre foat, couches et intercalaires, y compris les modélisations où la couche fait face à l'intercalaire. Il est de la responsabilité de l'utilisateur d'évaluer si la composition du verre feuilleté répond aux normes régionales pertinentes et est conforme aux réglementations de sécurité applicables en matière de verre feuilleté. En outre, lorsque la modélisation du verre feuilleté comprend un couche contre l'intercalaire, il peut y avoir une perte de performance d'isolation thermique et un changement de couleur par rapport à la classe revêtue non encastrée.

Produits non-spéculaire (translucide et diffus)

La mesure des performances pour les matériaux non spéculaires (translucides ou diffus) tels que les intercalaires translucides , la surface de verre dépolie à l'acide, ou la surface avec sérigraphie est limitée par les technologies expérimentales actuelles. Etant donné que les mesures capturent physiquement seulement une partie du rayonnement résultant, les résultats de performance calculés fournis ici et basés sur de telles mesures ne sont conformes à aucune norme (y compris EN 410) et ne peuvent être utilisés que comme référence générale. Les valeurs réelles peuvent varier considérablement en fonction du procédé de fabrication exact, ainsi que du type, de l'épaisseur et de la couleur du matériau non spéculaire utilisé.

Veuillez noter que la directive relative a la tension thermique n'est qu'une référence approximative à la résistance thermique d'un vitrage et ne constituent en aucun cas une garantie contre le bris de vitres.

Explication des termes

- % transmission visible ou facteur de transmission lumineuse (τ_{V} %) correspond au pourcentage de lumière visible qui est transmis par le verre à une incidence normale (90° par rapport à la surface).
- % facteur de transmission de l'ultraviolet (UV) (τ_{UV} %) correspond au pourcentage de lumière ultraviolette qui est transmis directement par le verre à une incidence normale. La lumière ultraviolette se définit comme l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 380 nm.
- % facteur de transmission directe de l'énergie solaire (τ_e %) correspond au pourcentage d'énergie solaire qui est transmis directement à travers le verre à incidence normale. L'énergie solaire correspond à l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 2500 nm.
- % facteur de réflexion visible vers l'extérieur ou de réflexion lumineuse vers l'extérieur (ρ_V % out) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % facteur de réflexion visible vers l'intérieur ou de réflexion lumineuse vers l'intérieur (ρ_V % in) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'extérieur ou facteur de réflexion directe de l'énergie solaire vers l'extérieur (ρ_e % out) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'intérieur ou facteur de réflexion directe de l'énergie solaire vers l'intérieur (pe % in) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- Le facteur d'absorption (α_e %) (solaire, visible ou UV) se définit comme un processus durant lequel une gamme de rayons est retenue par une substance et convertie en énergie thermique. La génération d'énergie thermique entraîne la substance à émettre son propre rayonnement.
- Le facteur U ou la valeur U (U_G) représente la conductance thermique air/air d'un 39" vitrage et des lames d'air associées. Les unités américaines standard sont Btu/hr.ft².F. et les unités métriques SI sont W/m²K. Les valeurs hivernales nocturnes sont de 12,3 mph de vent à -0,4°F pour l'extérieur et 69,8°F pour l'air calme intérieur. Les valeurs estivales sont de 0 pour le soleil, 6,15 mph de vent à 89,6°F pour l'extérieur et 75,2°F pour l'air calme intérieur.
- Le gain de chaleur relatif (GCR) représente le gain de chaleur total net vers l'intérieur dû à la fois à la conductance thermique air/air et au gain de chaleur solaire. Les unités impériales sont Btu/hr.ft². Le GCR = [(valeur U estivale)(89,6°F 75,2°F) + (coefficient d'atténuation)(200 Btu/hr-ft²)]. Les unités métriques sont en W/m². Le GCR = [(valeur U estivale)(32°F 24°F) + (coefficient d'atténuation)(631 W/m²)]
- Le coefficient d'atténuation (SC) correspond à la fraction de chaleur solaire, directe (300 à 2500 nm) plus indirecte (5 à 40 μm) qui est transférée vers l'intérieur à travers le vitrage. À titre de référence, du verre clair de 1/8" (3,1 mm) présente une valeur de 1,00 (le SC est un terme plus ancien remplacé par le SHGC).
- Le coefficient de gain de chaleur solaire (SHGC) correspond à la fraction de l'énergie solaire incidente qui est transférée vers l'intérieur directement et indirectement à travers le vitrage. La part du gain direct est égale au facteur de transmission solaire directe alors que la part indirecte est la fraction d'énergie solaire absorbée dans l'énergie réémise et transmise par convection vers l'intérieur. Aucun gain de chaleur émanant de l'air extérieur plus chaud n'est inclus. Le SHGC = (facteur de transmission solaire directe) + {[(gain de chaleur solaire indirect) (valeur U estivale)(89,6°F 75,2°F)] / (248.209 Btu/hr-ft²)}
- Le rapport de la lumière au gain solaire (rapport LSG) correspond au rapport entre le gain de lumière visible et le gain énergétique solaire. Rapport LSG = (transmission visible) / (SHGC)
- L'indice de rendu des couleurs en transmission, D65 (R_a) correspond au changement de couleur d'un objet résultant de la lumière transmise par le verre.
- L'indice pondéré d'affaiblissement acoustique (Rw) est une valeur unique qui caractérise l'isolement aux bruits aériens d'un matériau ou élément de construction sur une gamme de fréquences.
- L'indice de transmission du son (ITS) est une valeur unique qui caractérise l'isolement acoustique d'un matériau ou élément de construction sur une gamme de fréquences.

Clause de non-responsabilité

La présente analyse de performance est fournie dans le seul but d'aider l'utilisateur à évaluer les performances des produits verriers dont il est question dans ce rapport.

Les données spectrales relatives aux produits fabriqués par Guardian reflètent des valeurs nominales dérivées d'échantillons de production type ou d'essais de type initial CE et soumises à des variations liées aux tolérances de fabrication et de calcul. Les

Performance Calculator

données spectrales des produits non fabriqués par Guardian sont issues de la base de données LBNL International Glazing et n'ont pas fait l'objet d'une vérification indépendante par Guardian. Guardian recommande l'approbation d'une maquette en taille réelle.

Les valeurs proposées ici sont générées selon des pratiques d'ingénierie éprouvées et des normes de calcul standard. De nombreux facteurs peuvent influencer les propriétés des vitrages, tels que dimensions du verre, orientation du bâtiment, ombrage, vitesse du vent, type d'installation et processus de fabrication entre autres. L'applicabilité et les résultats de l'analyse sont directement liés aux données entrées par l'utilisateur, et toute modification des conditions réelles peut avoir un impact significatif sur les résultats. Il incombe aux utilisateurs de faire en sorte que l'application prévue soit appropriée et conforme à l'ensemble des lois, règlements, normes, codes de pratique, directives de traitement et autres exigences applicables. Guardian ne garantit pas la disponibilité des modèles de vitrage ci-inclus auprès de Guardian ou de tout autre fabricant. Il incombe à l'utilisateur de s'informer auprès du fabricant quant à la disponibilité de tout type de verre ou composition.

Bien que Guardian se soit employé en toute bonne foi à vérifier la fiabilité des outils utilisés aux fins de cette analyse, il n'est pas exclu qu'ils comportent des erreurs de programmation inconnues pouvant engendrer des résultats inexacts. L'utilisateur assumera tous les risques liés aux résultats fournis et sera seul responsable de la sélection des produits appropriés pour l'application de l'utilisateur. Guardian ne fournit aucune garantie de quelque nature que ce soit, expresse ou implicite, concernant les outils utilisés par Guardian et cette analyse. Il n'existe aucune garantie de négociabilité, de non-infraction ou d'adéquation à un usage particulier relative aux outils utilisés par Guardian et cette analyse, et aucune garantie ne sera réputée implicite en vertu de la loi ou autre. Les seules garanties applicables aux produits Guardian sont celles fournies séparément par écrit pour chaque produit. Guardian ne sera aucun cas tenu de répondre de dommages directs, indirects, spécifiques, consécutifs ou fortuits d'une quelconque nature, liés à ou résultant de l'utilisation des outils et analyses Guardian.

Trademarks owned by Guardian Industries, LLC and/or its affiliates may be registered in the United States and other jurisdictions. All other trademarks are property of their respective owners.

Double vitrage 28.8mm

Configuration	Verre 1	1 Verre 2	Lumière Visible			Énergie Solaire				Propriétés Thermiques			Rapport de la	
			Verre 2	Transmi ssion	Réflec	tance	Transmi ssion	Réflecta nce	de gain de	Coefficient		Vale	ur U	
			visible (τ _V %)	ρ _V % ext	ρ _V % int	solaire (τ _e %)	ρ _e % ext	chaleur solaire (SHGC)	d'atténuatio n (sc)	Nuit hivernale (W/m²-K)	Journée estivale (W/m²-K)		(rapport LSG)	
Double vitrage 28.8mm	Guardia n ExtraCl ear (CE)	ClimaG uard® Premiu m2 T (CE) sur Guardia n ExtraCl ear (CE)	80	13	13	51	24	0,54	0,62	1,403	1,052	0,71	1,47	

Norme de calcul : NFRC 2010

Double	vitrage 28.8mm

			Exte	érieur							
SUBSTRAT	Guard	lian ExtraClear (CE)		#1							
1	Épais	seur = 4 mm		#2							
PVB 1	PVB (Clear 0.76mm (CE)									
SUBSTRAT	Guard	lian ExtraClear (CE)		#3							
2	Épais	seur = 4 mm		#4 ClimaGuard® Premium2 T (CE)							
LAME DE GAZ 1		100% Argon, 16 mm (,630")									
SUBSTRAT	Guard	lian ExtraClear (CE)		#5							
3	Épais	seur = 4 mm		#6							
	Total	Unit (Nominal) = 1 1/8 en / 28,762 mm		Inclinaison = 90° Hauteur de fen							
	Poids	du vitrage nominal estimé : 29,6 kg/m²									
l			Inté	rieur							

Remarques importantes

Calculations and terms in this report are based on NFRC 2010. The performance values shown above represent nominal values for the center of glass with no spacer system or framing.

Produits laminées

Le Performance Calculator permet à l'utilisateur de modéliser une grande variété de combinaison en verre feuilleté en utilisant différents substrats en verre foat, couches et intercalaires, y compris les modélisations où la couche fait face à l'intercalaire. Il est de la responsabilité de l'utilisateur d'évaluer si la composition du verre feuilleté répond aux normes régionales pertinentes et est conforme aux réglementations de sécurité applicables en matière de verre feuilleté. En outre, lorsque la modélisation du verre feuilleté comprend un couche contre l'intercalaire, il peut y avoir une perte de performance d'isolation thermique et un changement de couleur par rapport à la classe revêtue non encastrée.

Produits non-spéculaire (translucide et diffus)

La mesure des performances pour les matériaux non spéculaires (translucides ou diffus) tels que les intercalaires translucides, la surface de verre dépolie à l'acide, ou la surface avec sérigraphie est limitée par les technologies expérimentales actuelles. Etant donné que les mesures capturent physiquement seulement une partie du rayonnement résultant, les résultats de performance calculés fournis ici et basés sur de telles mesures ne sont conformes à aucune norme (y compris EN 410) et ne peuvent être utilisés que comme référence générale. Les valeurs réelles peuvent varier considérablement en fonction du procédé de fabrication exact, ainsi que du type, de l'épaisseur et de la couleur du matériau non spéculaire utilisé.

Veuillez noter que la directive relative a la tension thermique n'est qu'une référence approximative à la résistance thermique d'un vitrage et ne constituent en aucun cas une garantie contre le bris de vitres.

Explication des termes

- % transmission visible ou facteur de transmission lumineuse (τ_V %) correspond au pourcentage de lumière visible qui est transmis par le verre à une incidence normale (90° par rapport à la surface).
- % facteur de transmission de l'ultraviolet (UV) (τ_{UV} %) correspond au pourcentage de lumière ultraviolette qui est transmis directement par le verre à une incidence normale. La lumière ultraviolette se définit comme l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 380 nm.
- % facteur de transmission directe de l'énergie solaire (τ_e %) correspond au pourcentage d'énergie solaire qui est transmis directement à travers le verre à incidence normale. L'énergie solaire correspond à l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 2500 nm.
- % facteur de réflexion visible vers l'extérieur ou de réflexion lumineuse vers l'extérieur (ρ_V % out) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % facteur de réflexion visible vers l'intérieur ou de réflexion lumineuse vers l'intérieur (p_V % in) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'extérieur ou facteur de réflexion directe de l'énergie solaire vers l'extérieur (ρ_e % out) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'intérieur ou facteur de réflexion directe de l'énergie solaire vers l'intérieur (pe % in) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- Le facteur d'absorption (α_e %) (solaire, visible ou UV) se définit comme un processus durant lequel une gamme de rayons est retenue par une substance et convertie en énergie thermique. La génération d'énergie thermique entraîne la substance à émettre son propre rayonnement.
- Le facteur U ou la valeur U (U_G) représente la conductance thermique air/air d'un 39" vitrage et des lames d'air associées. Les unités américaines standard sont Btu/hr.ft².F. et les unités métriques SI sont W/m²K. Les valeurs hivernales nocturnes sont de 12,3 mph de vent à -0,4°F pour l'extérieur et 69,8°F pour l'air calme intérieur. Les valeurs estivales sont de 0 pour le soleil, 6,15 mph de vent à 89,6°F pour l'extérieur et 75,2°F pour l'air calme intérieur.
- Le gain de chaleur relatif (GCR) représente le gain de chaleur total net vers l'intérieur dû à la fois à la conductance thermique air/air et au gain de chaleur solaire. Les unités impériales sont Btu/hr.ft². Le GCR = [(valeur U estivale)(89,6°F 75,2°F) + (coefficient d'atténuation)(200 Btu/hr-ft²)]. Les unités métriques sont en W/m². Le GCR = [(valeur U estivale)(32°F 24°F) + (coefficient d'atténuation)(631 W/m²)]
- Le coefficient d'atténuation (SC) correspond à la fraction de chaleur solaire, directe (300 à 2500 nm) plus indirecte (5 à 40 μm) qui est transférée vers l'intérieur à travers le vitrage. À titre de référence, du verre clair de 1/8" (3,1 mm) présente une valeur de 1,00 (le SC est un terme plus ancien remplacé par le SHGC).
- Le coefficient de gain de chaleur solaire (SHGC) correspond à la fraction de l'énergie solaire incidente qui est transférée vers l'intérieur directement et indirectement à travers le vitrage. La part du gain direct est égale au facteur de transmission solaire directe alors que la part indirecte est la fraction d'énergie solaire absorbée dans l'énergie réémise et transmise par convection vers l'intérieur. Aucun gain de chaleur émanant de l'air extérieur plus chaud n'est inclus. Le SHGC = (facteur de transmission solaire directe) + {[(gain de chaleur solaire indirect) (valeur U estivale)(89,6°F 75,2°F)] / (248.209 Btu/hr-ft²)}
- Le rapport de la lumière au gain solaire (rapport LSG) correspond au rapport entre le gain de lumière visible et le gain énergétique solaire. Rapport LSG = (transmission visible) / (SHGC)
- L'indice de rendu des couleurs en transmission, D65 (R_a) correspond au changement de couleur d'un objet résultant de la lumière transmise par le verre.
- L'indice pondéré d'affaiblissement acoustique (Rw) est une valeur unique qui caractérise l'isolement aux bruits aériens d'un matériau ou élément de construction sur une gamme de fréquences.
- L'indice de transmission du son (ITS) est une valeur unique qui caractérise l'isolement acoustique d'un matériau ou élément de construction sur une gamme de fréquences.

Clause de non-responsabilité

Performance Calculator

La présente analyse de performance est fournie dans le seul but d'aider l'utilisateur à évaluer les performances des produits verriers dont il est question dans ce rapport.

Les données spectrales relatives aux produits fabriqués par Guardian reflètent des valeurs nominales dérivées d'échantillons de production type ou d'essais de type initial CE et soumises à des variations liées aux tolérances de fabrication et de calcul. Les données spectrales des produits non fabriqués par Guardian sont issues de la base de données LBNL International Glazing et n'ont pas fait l'objet d'une vérification indépendante par Guardian. Guardian recommande l'approbation d'une maquette en taille réelle.

Les valeurs proposées ici sont générées selon des pratiques d'ingénierie éprouvées et des normes de calcul standard. De nombreux facteurs peuvent influencer les propriétés des vitrages, tels que dimensions du verre, orientation du bâtiment, ombrage, vitesse du vent, type d'installation et processus de fabrication entre autres. L'applicabilité et les résultats de l'analyse sont directement liés aux données entrées par l'utilisateur, et toute modification des conditions réelles peut avoir un impact significatif sur les résultats. Il incombe aux utilisateurs de faire en sorte que l'application prévue soit appropriée et conforme à l'ensemble des lois, règlements, normes, codes de pratique, directives de traitement et autres exigences applicables. Guardian ne garantit pas la disponibilité des modèles de vitrage ci-inclus auprès de Guardian ou de tout autre fabricant. Il incombe à l'utilisateur de s'informer auprès du fabricant quant à la disponibilité de tout type de verre ou composition.

Bien que Guardian se soit employé en toute bonne foi à vérifier la fiabilité des outils utilisés aux fins de cette analyse, il n'est pas exclu qu'ils comportent des erreurs de programmation inconnues pouvant engendrer des résultats inexacts. L'utilisateur assumera tous les risques liés aux résultats fournis et sera seul responsable de la sélection des produits appropriés pour l'application de l'utilisateur. Guardian ne fournit aucune garantie de quelque nature que ce soit, expresse ou implicite, concernant les outils utilisés par Guardian et cette analyse. Il n'existe aucune garantie de négociabilité, de non-infraction ou d'adéquation à un usage particulier relative aux outils utilisés par Guardian et cette analyse, et aucune garantie ne sera réputée implicite en vertu de la loi ou autre. Les seules garanties applicables aux produits Guardian sont celles fournies séparément par écrit pour chaque produit. Guardian ne sera aucun cas tenu de répondre de dommages directs, indirects, spécifiques, consécutifs ou fortuits d'une quelconque nature, liés à ou résultant de l'utilisation des outils et analyses Guardian.

Trademarks owned by Guardian Industries, LLC and/or its affiliates may be registered in the United States and other jurisdictions. All other trademarks are property of their respective owners.

Double vitrage 37.5mm

Configuration	Verre 1		Lumière Visible			Énergie Solaire				Propriétés Thermiques			Rapport de la	
		Verre 2	Transmi Réfle erre 2 ssion	Réflec	ctance Transmi ssion		Réflecta nce	de gain de	Coefficient	Valeur U			lumière au gain	
			visible (τ _V %)	ρ _V % ext	ρ _V % int	solaire (τ _e %)	ρ _e % ext	chaleur solaire (SHGC)	d'atténuatio n (sc)	Nuit hivernale (W/m²-K)	Journée estivale (W/m²-K)	Valeur R	solaire (rapport LSG)	
Double vitrage 37.5mm	Guardia n ExtraCI ear (CE)	ClimaG uard® Premiu m2 T (CE) sur Guardia n ExtraCl ear (CE)	78	13	13	46	21	0,52	0,60	1,376	1,040	0,73	1,50	

Norme de calcul : NFRC 2010

Double	vitrage	37.5mm

			Extérieur							
SUBSTRAT	Guar	dian ExtraClear (CE)	#1							
1	Épais	seur = 6 mm	#2							
PVB 1	PVB	Clear 0.76mm (CE)								
SUBSTRAT	Guar	dian ExtraClear (CE)	#3							
2	Épais	seur = 6 mm	#4 ClimaGuard® Premiu	m2 T (CE)						
LAME DE GAZ 1		100% Argon, 16 mm (,630")								
SUBSTRAT	Guar	dian ExtraClear (CE)	#5							
3	Épais	seur = 4 mm	#6							
PVB 2	PVB	Clear 0.76mm (CE)								
SUBSTRAT	Guar	dian ExtraClear (CE)	#7							
4	Épais	seur = 4 mm	#8							
	Total	Unit (Nominal) = 1 7/16 en / 37,524 mm	Inclinaison = 90°	Hauteur de fenêtre = 1 mètre						
	Poids	du vitrage nominal estimé : 50,01 kg/m²								
			Intérieur							

Remarques importantes

Calculations and terms in this report are based on NFRC 2010. The performance values shown above represent nominal values for the center of glass with no spacer system or framing.

Produits laminées:

Le Performance Calculator permet à l'utilisateur de modéliser une grande variété de combinaison en verre feuilleté en utilisant différents substrats en verre foat, couches et intercalaires, y compris les modélisations où la couche fait face à l'intercalaire. Il est de la responsabilité de l'utilisateur d'évaluer si la composition du verre feuilleté répond aux normes régionales pertinentes et est conforme aux réglementations de sécurité applicables en matière de verre feuilleté. En outre, lorsque la modélisation du verre feuilleté comprend un couche contre l'intercalaire, il peut y avoir une perte de performance d'isolation thermique et un changement de couleur par rapport à la classe revêtue non encastrée.

Produits non-spéculaire (translucide et diffus)

La mesure des performances pour les matériaux non spéculaires (translucides ou diffus) tels que les intercalaires translucides , la surface de verre dépolie à l'acide, ou la surface avec sérigraphie est limitée par les technologies expérimentales actuelles. Etant donné que les mesures capturent physiquement seulement une partie du rayonnement résultant, les résultats de performance calculés fournis ici et basés sur de telles mesures ne sont conformes à aucune norme (y compris EN 410) et ne peuvent être utilisés que comme référence générale. Les valeurs réelles peuvent varier considérablement en fonction du procédé de fabrication exact,

ainsi que du type, de l'épaisseur et de la couleur du matériau non spéculaire utilisé.

Veuillez noter que la directive relative a la tension thermique n'est qu'une référence approximative à la résistance thermique d'un vitrage et ne constituent en aucun cas une garantie contre le bris de vitres.

Explication des termes

- % transmission visible ou facteur de transmission lumineuse (τ_V %) correspond au pourcentage de lumière visible qui est transmis par le verre à une incidence normale (90° par rapport à la surface).
- % facteur de transmission de l'ultraviolet (UV) (τ_{UV} %) correspond au pourcentage de lumière ultraviolette qui est transmis directement par le verre à une incidence normale. La lumière ultraviolette se définit comme l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 380 nm.
- % facteur de transmission directe de l'énergie solaire (τ_e %) correspond au pourcentage d'énergie solaire qui est transmis directement à travers le verre à incidence normale. L'énergie solaire correspond à l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 2500 nm.
- % facteur de réflexion visible vers l'extérieur ou de réflexion lumineuse vers l'extérieur (ρ_V % out) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % facteur de réflexion visible vers l'intérieur ou de réflexion lumineuse vers l'intérieur (ρ_V % in) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'extérieur ou facteur de réflexion directe de l'énergie solaire vers l'extérieur (pe % out) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'intérieur ou facteur de réflexion directe de l'énergie solaire vers l'intérieur (pe % in) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- Le facteur d'absorption (α_e %) (solaire, visible ou UV) se définit comme un processus durant lequel une gamme de rayons est retenue par une substance et convertie en énergie thermique. La génération d'énergie thermique entraîne la substance à émettre son propre rayonnement.
- Le facteur U ou la valeur U (U_G) représente la conductance thermique air/air d'un 39" vitrage et des lames d'air associées. Les unités américaines standard sont Btu/hr.ft².F. et les unités métriques SI sont W/m²K. Les valeurs hivernales nocturnes sont de 12,3 mph de vent à -0,4°F pour l'extérieur et 69,8°F pour l'air calme intérieur. Les valeurs estivales sont de 0 pour le soleil, 6,15 mph de vent à 89,6°F pour l'extérieur et 75,2°F pour l'air calme intérieur.
- Le gain de chaleur relatif (GCR) représente le gain de chaleur total net vers l'intérieur dû à la fois à la conductance thermique air/air et au gain de chaleur solaire. Les unités impériales sont Btu/hr.ft². Le GCR = [(valeur U estivale)(89,6°F 75,2°F) + (coefficient d'atténuation)(200 Btu/hr-ft²)]. Les unités métriques sont en W/m². Le GCR = [(valeur U estivale)(32°F 24°F) + (coefficient d'atténuation)(631 W/m²)]
- Le coefficient d'atténuation (SC) correspond à la fraction de chaleur solaire, directe (300 à 2500 nm) plus indirecte (5 à 40 μm) qui est transférée vers l'intérieur à travers le vitrage. À titre de référence, du verre clair de 1/8" (3,1 mm) présente une valeur de 1,00 (le SC est un terme plus ancien remplacé par le SHGC).
- Le coefficient de gain de chaleur solaire (SHGC) correspond à la fraction de l'énergie solaire incidente qui est transférée vers l'intérieur directement et indirectement à travers le vitrage. La part du gain direct est égale au facteur de transmission solaire directe alors que la part indirecte est la fraction d'énergie solaire absorbée dans l'énergie réémise et transmise par convection vers l'intérieur. Aucun gain de chaleur émanant de l'air extérieur plus chaud n'est inclus. Le SHGC = (facteur de transmission solaire directe) + {[(gain de chaleur solaire indirect) (valeur U estivale)(89,6°F 75,2°F)] / (248.209 Btu/hr-ft²)}
- Le rapport de la lumière au gain solaire (rapport LSG) correspond au rapport entre le gain de lumière visible et le gain énergétique solaire. Rapport LSG = (transmission visible) / (SHGC)
- L'indice de rendu des couleurs en transmission, D65 (Ra) correspond au changement de couleur d'un objet résultant de la lumière transmise par le verre.
- L'indice pondéré d'affaiblissement acoustique (Rw) est une valeur unique qui caractérise l'isolement aux bruits aériens d'un matériau ou élément de construction sur une gamme de fréquences.
- L'indice de transmission du son (ITS) est une valeur unique qui caractérise l'isolement acoustique d'un matériau ou élément de construction sur une gamme de fréquences.

Clause de non-responsabilité

La présente analyse de performance est fournie dans le seul but d'aider l'utilisateur à évaluer les performances des produits verriers dont il est question dans ce rapport.

Les données spectrales relatives aux produits fabriqués par Guardian reflètent des valeurs nominales dérivées d'échantillons de production type ou d'essais de type initial CE et soumises à des variations liées aux tolérances de fabrication et de calcul. Les données spectrales des produits non fabriqués par Guardian sont issues de la base de données LBNL International Glazing et n'ont pas fait l'objet d'une vérification indépendante par Guardian. Guardian recommande l'approbation d'une maquette en taille réelle.

Les valeurs proposées ici sont générées selon des pratiques d'ingénierie éprouvées et des normes de calcul standard. De nombreux facteurs peuvent influencer les propriétés des vitrages, tels que dimensions du verre, orientation du bâtiment, ombrage, vitesse du vent, type d'installation et processus de fabrication entre autres. L'applicabilité et les résultats de l'analyse sont directement liés aux données entrées par l'utilisateur, et toute modification des conditions réelles peut avoir un impact significatif sur les résultats. Il incombe aux utilisateurs de faire en sorte que l'application prévue soit appropriée et conforme à l'ensemble des lois, règlements, normes, codes de pratique, directives de traitement et autres exigences applicables. Guardian ne garantit pas la disponibilité des modèles de vitrage ci-inclus auprès de Guardian ou de tout autre fabricant. Il incombe à l'utilisateur de s'informer auprès du fabricant quant à la disponibilité de tout type de verre ou composition.

Bien que Guardian se soit employé en toute bonne foi à vérifier la fiabilité des outils utilisés aux fins de cette analyse, il n'est pas exclu qu'ils comportent des erreurs de programmation inconnues pouvant engendrer des résultats inexacts. L'utilisateur assumera tous les risques liés aux résultats fournis et sera seul responsable de la sélection des produits appropriés pour l'application de l'utilisateur. Guardian ne fournit aucune garantie de quelque nature que ce soit, expresse ou implicite, concernant les outils utilisés par Guardian et cette analyse. Il n'existe aucune garantie de négociabilité, de non-infraction ou d'adéquation à un usage particulier relative aux outils utilisés par Guardian et cette analyse, et aucune garantie ne sera réputée implicite en vertu de la loi ou autre. Les seules garanties applicables aux produits Guardian sont celles fournies séparément par écrit pour chaque produit. Guardian ne sera aucun cas tenu de répondre de dommages directs, indirects, spécifiques, consécutifs ou fortuits d'une quelconque nature, liés à ou résultant de l'utilisation des outils et analyses Guardian.

Trademarks owned by Guardian Industries, LLC and/or its affiliates may be registered in the United States and other jurisdictions. All other trademarks are property of their respective owners.

Triple vitrage 42mm

Configuration	Verre 1		Lumière Visible			Énergie Solaire				Propriétés Thermiques			Rapport de la	
		Verre 2	Transmi ssion	Réflec	tance	Transmi ssion	Réflecta nce	de gain de	Coefficient	Vale	ur U		lumière au gain	
			visible (τ _V %)	ρ _V % ext	ρ _V % int	solaire (τ _e %)	ρ _e % ext	chaleur solaire (SHGC)	d'atténuatio n (sc)	Nuit hivernale (W/m²-K)	Journée estivale (W/m²-K)	Valeur R	solaire (rapport LSG)	
Triple vitrage 42mm	ClimaG uard® Premiu m2 T (CE) sur Guardia n ExtraCl ear (CE)	Guardia n ExtraCI ear (CE)	73	17	17	43	36	0,50	0,57	0,680	0,616	1,47	1,47	

Norme de calcul : NFRC 2010

Double vitrage 42mm

SUBSTRAT

Extérieur **SUBSTRAT** Guardian ExtraClear (CE) Épaisseur = 4 mm #2 ClimaGuard® Premium2 T (CE) LAME DE 100% Argon, 16 mm (,630") GAZ 1 **SUBSTRAT** Guardian ExtraClear (CE) #3 -----Épaisseur = 4 mm #4 -----LAME DE 100% Argon, 14 mm (,551") GAZ 2

Guardian ExtraClear (CE) #5 ClimaGuard® Premium2 T (CE) Épaisseur = 4 mm #6 -----

Poids du vitrage nominal estimé : 28,79 kg/m²

Total Unit (Nominal) = 1 5/8 en / 42 mm

Intérieur

Inclinaison = 90°

Hauteur de fenêtre = 1 mètre

Remarques importantes

Calculations and terms in this report are based on NFRC 2010. The performance values shown above represent nominal values for the center of glass with no spacer system or framing.

Produits laminées:

Le Performance Calculator permet à l'utilisateur de modéliser une grande variété de combinaison en verre feuilleté en utilisant différents substrats en verre foat, couches et intercalaires, y compris les modélisations où la couche fait face à l'intercalaire. Il est de la responsabilité de l'utilisateur d'évaluer si la composition du verre feuilleté répond aux normes régionales pertinentes et est conforme aux réglementations de sécurité applicables en matière de verre feuilleté. En outre, lorsque la modélisation du verre feuilleté comprend un couche contre l'intercalaire, il peut y avoir une perte de performance d'isolation thermique et un changement de couleur par rapport à la classe revêtue non encastrée.

Produits non-spéculaire (translucide et diffus)

La mesure des performances pour les matériaux non spéculaires (translucides ou diffus) tels que les intercalaires translucides , la surface de verre dépolie à l'acide, ou la surface avec sérigraphie est limitée par les technologies expérimentales actuelles. Etant donné que les mesures capturent physiquement seulement une partie du rayonnement résultant, les résultats de performance calculés fournis ici et basés sur de telles mesures ne sont conformes à aucune norme (y compris EN 410) et ne peuvent être utilisés que comme référence générale. Les valeurs réelles peuvent varier considérablement en fonction du procédé de fabrication exact, ainsi que du type, de l'épaisseur et de la couleur du matériau non spéculaire utilisé.

Veuillez noter que la directive relative a la tension thermique n'est qu'une référence approximative à la résistance thermique d'un vitrage et ne constituent en aucun cas une garantie contre le bris de vitres.

Explication des termes

- % transmission visible ou facteur de transmission lumineuse ($\tau_{\mathbf{V}}$ %) correspond au pourcentage de lumière visible qui est transmis par le verre à une incidence normale (90° par rapport à la surface).
- % facteur de transmission de l'ultraviolet (UV) (τ_{UV} %) correspond au pourcentage de lumière ultraviolette qui est transmis directement par le verre à une incidence normale. La lumière ultraviolette se définit comme l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 380 nm.
- % facteur de transmission directe de l'énergie solaire (τ_e %) correspond au pourcentage d'énergie solaire qui est transmis directement à travers le verre à incidence normale. L'énergie solaire correspond à l'énergie rayonnante présentant une gamme de longueurs d'onde de 300 nm à 2500 nm.
- % facteur de réflexion visible vers l'extérieur ou de réflexion lumineuse vers l'extérieur (p_V % out) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % facteur de réflexion visible vers l'intérieur ou de réflexion lumineuse vers l'intérieur (p_V % in) correspond au pourcentage de lumière visible qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'extérieur ou facteur de réflexion directe de l'énergie solaire vers l'extérieur (pe % out) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'extérieur, à une incidence normale.
- % énergie solaire réfléchie vers l'intérieur ou facteur de réflexion directe de l'énergie solaire vers l'intérieur (pe % in) correspond au pourcentage d'énergie solaire qui est directement réfléchi par le verre vers l'intérieur, à une incidence normale.
- Le facteur d'absorption (α_e %) (solaire, visible ou UV) se définit comme un processus durant lequel une gamme de rayons est retenue par une substance et convertie en énergie thermique. La génération d'énergie thermique entraîne la substance à émettre son propre rayonnement.
- Le facteur U ou la valeur U (U_G) représente la conductance thermique air/air d'un 39" vitrage et des lames d'air associées. Les unités américaines standard sont Btu/hr.ft².F. et les unités métriques SI sont W/m²K. Les valeurs hivernales nocturnes sont de 12,3 mph de vent à -0,4°F pour l'extérieur et 69,8°F pour l'air calme intérieur. Les valeurs estivales sont de 0 pour le soleil, 6,15 mph de vent à 89,6°F pour l'extérieur et 75,2°F pour l'air calme intérieur.
- Le gain de chaleur relatif (GCR) représente le gain de chaleur total net vers l'intérieur dû à la fois à la conductance thermique air/air et au gain de chaleur solaire. Les unités impériales sont Btu/hr.ft². Le GCR = [(valeur U estivale)(89,6°F 75,2°F) + (coefficient d'atténuation)(200 Btu/hr-ft²)]. Les unités métriques sont en W/m². Le GCR = [(valeur U estivale)(32°F 24°F) + (coefficient d'atténuation)(631 W/m²)]
- Le coefficient d'atténuation (SC) correspond à la fraction de chaleur solaire, directe (300 à 2500 nm) plus indirecte (5 à 40 μm) qui est transférée vers l'intérieur à travers le vitrage. À titre de référence, du verre clair de 1/8" (3,1 mm) présente une valeur de 1,00 (le SC est un terme plus ancien remplacé par le SHGC).
- Le coefficient de gain de chaleur solaire (SHGC) correspond à la fraction de l'énergie solaire incidente qui est transférée vers l'intérieur directement et indirectement à travers le vitrage. La part du gain direct est égale au facteur de transmission solaire directe alors que la part indirecte est la fraction d'énergie solaire absorbée dans l'énergie réémise et transmise par convection vers l'intérieur. Aucun gain de chaleur émanant de l'air extérieur plus chaud n'est inclus. Le SHGC = (facteur de transmission solaire directe) + {[(gain de chaleur solaire indirect) (valeur U estivale)(89,6°F 75,2°F)] / (248.209 Btu/hr-ft²)}
- Le rapport de la lumière au gain solaire (rapport LSG) correspond au rapport entre le gain de lumière visible et le gain énergétique solaire. Rapport LSG = (transmission visible) / (SHGC)
- L'indice de rendu des couleurs en transmission, D65 (R_a) correspond au changement de couleur d'un objet résultant de la lumière transmise par le verre.
- L'indice pondéré d'affaiblissement acoustique (Rw) est une valeur unique qui caractérise l'isolement aux bruits aériens d'un matériau ou élément de construction sur une gamme de fréquences.
- L'indice de transmission du son (ITS) est une valeur unique qui caractérise l'isolement acoustique d'un matériau ou élément de construction sur une gamme de fréquences.

Clause de non-responsabilité

La présente analyse de performance est fournie dans le seul but d'aider l'utilisateur à évaluer les performances des produits verriers dont il est question dans ce rapport.

Les données spectrales relatives aux produits fabriqués par Guardian reflètent des valeurs nominales dérivées d'échantillons de production type ou d'essais de type initial CE et soumises à des variations liées aux tolérances de fabrication et de calcul. Les données spectrales des produits non fabriqués par Guardian sont issues de la base de données LBNL International Glazing et n'ont pas fait l'objet d'une vérification indépendante par Guardian. Guardian recommande l'approbation d'une maquette en taille réelle.

Les valeurs proposées ici sont générées selon des pratiques d'ingénierie éprouvées et des normes de calcul standard. De nombreux facteurs peuvent influencer les propriétés des vitrages, tels que dimensions du verre, orientation du bâtiment, ombrage, vitesse du vent, type d'installation et processus de fabrication entre autres. L'applicabilité et les résultats de l'analyse sont directement liés aux données entrées par l'utilisateur, et toute modification des conditions réelles peut avoir un impact significatif sur les résultats. Il incombe aux utilisateurs de faire en sorte que l'application prévue soit appropriée et conforme à l'ensemble des lois, règlements, normes, codes de pratique, directives de traitement et autres exigences applicables. Guardian ne garantit pas la disponibilité des modèles de vitrage ci-inclus auprès de Guardian ou de tout autre fabricant. Il incombe à l'utilisateur de s'informer auprès du fabricant quant à la disponibilité de tout type de verre ou composition.

Bien que Guardian se soit employé en toute bonne foi à vérifier la fiabilité des outils utilisés aux fins de cette analyse, il n'est pas exclu qu'ils comportent des erreurs de programmation inconnues pouvant engendrer des résultats inexacts. L'utilisateur assumera tous les risques liés aux résultats fournis et sera seul responsable de la sélection des produits appropriés pour l'application de l'utilisateur. Guardian ne fournit aucune garantie de quelque nature que ce soit, expresse ou implicite, concernant les outils utilisés par Guardian et cette analyse. Il n'existe aucune garantie de négociabilité, de non-infraction ou d'adéquation à un usage particulier relative aux outils utilisés par Guardian et cette analyse, et aucune garantie ne sera réputée implicite en vertu de la loi ou autre. Les seules garanties applicables aux produits Guardian sont celles fournies séparément par écrit pour chaque produit. Guardian ne sera aucun cas tenu de répondre de dommages directs, indirects, spécifiques, consécutifs ou fortuits d'une quelconque nature, liés à ou résultant de l'utilisation des outils et analyses Guardian.

Trademarks owned by Guardian Industries, LLC and/or its affiliates may be registered in the United States and other jurisdictions. All other trademarks are property of their respective owners.